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A weighted Euclidean distance model for analyzing three-way proximity data is proposed 
that incorporates a latent class approach. In this latent class weighted Euclidean model, the 
contribution to the distance function between two stimuli is per dimension weighted identically 
by all subjects in the same latent class. This model removes the rotational invariance of the 
classical multidimensional scaling model retaining psychologically meaningful dimensions, and 
drastically reduces the number of parameters in the traditional INDSCAL model. The proba- 
bility density function for the data of a subject is posited to be a finite mixture of spherical 
multivariate normal densities. The maximum likelihood function is optimized by means of an 
EM algorithm; a modified Fisher scoring method is used to update the parameters in the M-step. 
A model selection strategy is proposed and illustrated on both real and artificial data. 

Key words: weighted Euclidean distance model, INDSCAL, latent class analysis, mixture 
distribution model, EM algorithm. 

In t roduc t ion  

Mul t id imensional  scaling is a p rocedure  in which  dissimilari ty data  arising f rom N 
sources  each  relating J objects  pairwise,  is mode led  to fit d is tances  in some  type  o f  
space,  general ly  Euc l idean  o f  low dimensional i ty  R .  The  I N D S C A L  or weighted  Eu-  
cl idean dis tance mode l  p r o p o s e d  by Carroll  and Chang  (1970) r emoves  the ro ta t ional  
invar iance  exist ing in the classical  Eucl idean  model  p r o p o s e d  by  Torge r son  (1958) and 
G o w e r  (1966), thus provid ing  the use r  with d imens ions  that  are potent ial ly  psycho log-  
ically meaningful .  Equa t ion  (1) represents  the weighted  Euc l idean  dis tance  mode l  and  
(2) the classical  model :  

Yijk ~ dijk = ~ w i t ( x #  - xkr)  2 , (1) 
r = l  

where  Xjr is the coord ina te  o f  t h e j - t h  st imulus on  the r- th d imens ion  ( j  = 1, . . . , Jr); 
Wir is the weight  fo r  the r- th d imens ion  associa ted  with the i-th source  (i = 1 . . . . .  
N ) ;  dij k is the mode l  d is tance  be tween  the j - t h  and the k- th  s t imulus f r o m  the  i-th 
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source (j,  k = 1 . . . . .  J ; j  ~ k); and Yijk is the observed dissimilarity between stimuli 
j and k from source i. The weights wit in (1) are required to be nonnegative: 

wit >- O. (3) 

The explicit modeling of individual differences through the Wir parameters and the 
rotational uniqueness of the object coordinates undoubtedly account for the popularity 
of the INDSCAL model among users. Most often the N different sources represent N 
subjects from whom dissimilarity data are obtained. In this case (or in any case where 
N is large), the cost of removing the rotational invariance thus obtaining ease of inter- 
pretation is the introduction of many nuisance parameters (the individual subject 
weights W i r  ) . These weights are rarely interpreted for individual subjects, and the 
improvement in goodness-of-fit measures seldom seems to justify so many additional 
parameters. Therefore, we propose a latent class approach to this problem, removing 
the rotational invariance, retaining psychologically meaningful dimensions, and dras- 
tically reducing the number of parameters in the INDSCAL model. 

Latent class formulations, or more general mixture distribution approaches, have 
recently been explored in the context of various uni- and multidimensional scaling 
models for paired comparisons data (B6ckenholt & B/Sckenholt, 1990; De Soete, 1990; 
De Soete & Winsberg, 1993; Formann, 1989), pick any/n data (BOckenholt & Brcken- 
holt, 1990, 1991; De Soete & DeSarbo, 1991), and single stimulus preference data 
(DeSarbo, Howard, & Jedidi, 1991; De Soete & Winsberg, in press; De Soete & Heiser, 
I993). In these applications, latent class modeling has proven to be a viable technique 
for capturing systematic group differences in a parsimonious way. 

The CLASCAL Model 

Begin with J stimuli, M = J ( J  - 1)/2 is the number of stimulus pairs. Let the 
M-component column vector Yi = ( Y i 2 1 ,  Yi31, Yi32 . . . .  , YiJ ( j - l ) ) '  contain the M 
dissimilarity values for subject i (i = 1 . . . . .  N). The total data set will be indicated 
by the N x M matrix Y = ( Y l ,  • • • , Y N ) ' .  

In the latent class approach, we assume that each of the N subjects belongs to one 
and only one of a small number T (T a N) of latent classes or subpopulations. It is not 
known in advance to which latent class a particular subject i belongs. The (uncondi- 
tional) probability that any subject belongs to latent class t will be denoted At(1 <-- t <-- 
T), with, of course, 

T 

t = l  

X t = 1. ( 4 )  

The column vector k is defined as (A 1 . . . . .  At) ' .  
Latent class analysis was originally developed for categorical data and assumed 

that, within each latent class, the data are distributed according to a product of inde- 
pendent Bernoulli distributions (Lazarsfeld & Henry, 1968). Here we are dealing with 
continuous proximity data. Instead of assuming independent Bernoulli distributions, 
we will assume independent normal distributions that have a common variance. Hence, 
our model assumes a finite mixture of spherical multivariate normal distributions and is 
consequently a special case of the general mixture model of multivariate normal dis- 
tributions (see McLachlan & Basford, 1988). However, since the present mixture 
model relies on the same local independence assumption as traditional latent class 
analysis, it can be considered as a latent class model for continuous rating data (see De 
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Soete, in press, for a further discussion of this point). Note that the local independence 
assumption (i.e., independence between stimulus pairs within each latent class) does 
not imply global independence between the stimulus pairs. Rather it implies that any 
overall correlation between the stimulus pairs is due to the fact that the subjects belong 
to different latent classes. Hence, the local independence assumption on which CLAS- 
CAL model is based, is weaker than the global independence usually assumed in 
maximum likelihood multidimensional scaling procedures (Ramsay, 1977, 1982; Wins- 
berg & Carroll, 1989a, 1989b). Global independence is also implicitly assumed in most 
least squares multidimensional scaling methods. As noted by Ramsay (1991, p. 65), 
with rating data, violations of the independence assumption are usually not serious 
enough to warrant concern. The assumption of a c o m m o n  variance for all M stimulus 
pairs is consistent with the common practice of fitting multidimensional scaling models 
by means of u n w e i g h t e d  least squares methods. A stochastic model based on indepen- 
dent normal distributions with a common variance is one of the models incorporated in 
MULTISCALE (Ramsay, 1991) and has been assumed in other maximum likelihood 
multidimensional scaling methods (Winsberg & Carroll, 1989a, 1989b). In the final 
section, we discuss how the assumption of a common variance can be relaxed in a 
straightforward way. Note that while it might be tempting to assume a finite mixture of 
general multivariate normal densities instead of a finite mixture of spherical (or ellip- 
tical) normal densities, estimating the M ( M  + 1)/2 parameters of a covariance matrix 
between the M = J ( J  - 1)/2 stimulus pairs would be unwieldy, unless the number of 
subjects is extremely large. For instance, with 12 objects, 2211 additional parameters 
would have to be estimated! 

Thus, it is assumed that for a particular subject i in latent class t, the data Yi are 
independently normally distributed with means 8 t = (6t21, t S t 3 1 ,  t S t 3 2 ,  • • • , 8t J( J-I)) '  
and common variance 0.z: 

Yi ~ N ( S t ,  o '2 I )  for subject i in class t. (5) 

In the latent class weighted Euclidean distance model, the elements 6tjk of the M-com- 
ponent vector St are defined as 

t~tj k ---- W t r ( X j r  - -  X k r )  2 , 

r = l  

(6) 

where wt = (wt l  . . . .  , w tR ) '  denotes the INDSCAL-type weights for latent class t. 
For each latent class t, we estimate a separate set of weights wt. These weights are 
constrained to be nonnegative: 

Wtr >-- O. (7) 

The stimulus configuration X and the variance parameter 0 .2  , o n  the contrary, are 
assumed to be the same for all T latent classes. The R dimension weights for the T latent 
classes will be denoted as the T x R matrix W = (w I . . . . .  wr) ' .  

To fully identify the latent class weighted Euclidean distance model, the following 
constraints are imposed on the stimulus coordinates and the latent class weights: 

T 

E 
t = l  

Wtr = T, f o r r =  1 . . . . .  R, (8) 
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J 

x jr = 0, for r = 1 . . . .  , R.  (9) 
j = l  

The latent class weighted Euclidean distance model has T + 1 + J • R + T - R 
parameters corresponding to k, o -2, X, and W, respectively. By subtracting from the 
number of model parameters the number of constraints that are imposed on these 
parameters through (4), (8), and (9), the degrees of freedom of the model are obtained 

T +  (T + J -  2)R. (10) 

When T = 1, it is necessary to subtract from (10) T ( T  - 1)/2 for the rotational 
indeterminacy that occurs in this case. 

This model is denoted as CLASCAL to distinguish it from INDSCAL.  When T = 
N,  C L A S C A L  is equivalent to the INDSCAL model defined in (1) and when T = 1 it 
is equivalent to the classical Euclidean model defined in (2). When 1 < T ~ N,  
C L A S C A L  is a generalization of  both the weighted and the unweighted Euclidean 
distance model in that it more parsimonious that the former and more interpretable than 
the latter (due to the rotational invariance property). 

Parameter Estimation 

L i k e l i h o o d  F u n c t i o n  

Because of (5), the probability density function (pdf) of the data of  a subject i that 
belongs to latent class t can be written as 

f(yi,X, wt, o.2) = (o .~ / -~ ) -M exp [ (Yi -- ~)t)'(Yi -- St)] 
2o.2 . (11) 

Since it is not known in advance to which latent class a particular subject i belongs, the 
pdf of Yi becomes a finite mixture of multivariate normal densities: 

T 

y ( y / l X ,  W, 0 .2 , k )=  ~ Atf(Yi[X, I t ,  o .2  ) 

t = l  

T 

= ( o . x / Y ; )  -M E 
t=l 

At exp 
(Yi - ~,)'(Yi - ~t)] 

2O.2 "J 
(12) 

Maximum likelihood estimates of the parameters X, W, 0 "2, and k can be obtained by 
maximizing the likelihood function 

N 

L(X, W, o -2, ~.tY)= 1~ Y(Yit X, W, o "2, •) 
i = 1  

NIT - 

i =  t =  I 2 o ' 2  ' 

(13) 

subject to (4), (7), (8), and (9). 
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Once parameter estimates ~[, '~, @2, and k are obtained, the a posteriori proba- 
bility that a subject i belongs to latent class t can be computed by means of Bayes' 
theorem. This a posteriori probability, written as hit(X, ~V, &2, ~), eqUals 

A,f(yilR, fit ,  &2) 
hit(R, W, ~.2, ~)= 

Y(yiIX, W, &2, /~) 

At exp [ - (yi - gt)'(yi - 2 

= . (14) 
r [ ( Y i - ~ s ) ' ( Y ~ - ' s ) ]  

A, exp - 
• = 1 2&2 

A subject can then be assigned to the class for which the a posteriori membership 
probability is the largest. 

Estimation Algorithm 
As in many mixture distribution problems (McLachlan & Basford, 1988), the like- 

lihood function (13) is most easily optimized by means of an EM algorithm (Dempster, 
Laird, & Rubin, I977). To enable an EM algorithm formulation, some non-observed 
data are introduced: 

1 iff subject i belongs to class t, 
zit = 0 otherwise. (15) 

The column vector z i is defined as (zil . . . .  , ZiT)' and the N by T matrix Z as 
(zl . . . . .  ZN)'. It is assumed that the non-observed data zi are independently and 
identically multinomially distributed with probabilities k, that is, 

The distribution of Yi given zi is 

T 
Zit 

( z / I X )  ~ ]--I At • 
t = l  

(16) 

T 

(y/lz/, X, W ,  0 "2, ~ . ) ~  E zitf(yil x ,  wt, 0 -2) 
t = l  

T 

I~ f(y/tX, wt, 0"2) zi'. 
t = l  

The log likelihood of the complete data Y and Z can now be written as 

(17) 

N T 

log Lc(X,  W, o "2, XIY, Z ) =  ~'~ ~ zlt logf(y/lX, wt, 0 "2) 
i=l t=l 

N T 

-I- E E Zit log  At .  
i = l  t = l  

(18) 
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The EM algorithm alternates between an E-step (expectation step) and an M-step 
(maximization step) in an iterative fashion. In the E-step, the expectat ion of  log L c 
needs to be calculated over the conditional distribution of  the non-observed data Z, 
given the observed data Y and provisional estimates X (°) , W (°) , 0- 2(°), an d  k (°) of  the 
parameters.  This expectation is 

N T 
Q(X, W ,  0 "2, ]k, X (0), W (0), 2(°) Z~t O) 0 "2) 0- , k (0)) = ~ ~] Iog f (y i tX ,  Wt, 

i=1 t = l  

N T 

+ E E z~t °) log At, (19) 
i = I  t = l  

with 

Z~ O) = hi t (X (0), W (0), 0- 2(°), k (0)), (20) 

(see, e.g., McLachlan & Basford,  1988). Thus, in the E-step, the nonobserved Z are 
replaced by the a posteriori probabilities calculated on the basis of  the provisional 
parameter  estimates X (°) , W (°) , O "2(°', and k (°) . 

In the M-step, Q(X, w ,  o -2, k, X (°), W (°), 0- 2(°), k (°)) must be maximized with 
respect  to X, W, 0 "2, and k to obtain new provisional parameter  estimates. To maximize 
(19) with respect  to X and Wl . . . . .  WT subject to (7), (8), and (9), it suffices to minimize 
q l with respect  to these parameters (subject to the same constraints): 

N T J 
q l ( X ,  W )  = E Z E z~ O) (Yijk - ~,jk) 2 

i=1  t=l  j<k  

N T J T J 

E E E z}O)(Yijk--Ytjk ) 2+  E E Ft(Ytjk -- ~tJ k)2, 
i= 1 t= t j<k  t = 1 j<k  

(21) 

with 

N 

X z}O)Yok 
i=1 

37tjk = , (22) 
N 
X °> 

i=1 

and 

N 

F,=  X z} °> 
i=1 

(23) 

Because of  the orthogonal decomposit ion in (21), q l is minimized with respect  to X and 
W whenever  q ]  is minimal: 
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T J 

q](X,  W ) =  ~ Y. Ft(~qtjk - 6Ok) 2. 
t = l j < k  

(24) 

Hence, in the M-step, it suffices to minimize q ]  subject to (7), (8), and (9) to obtain new 
estimates of X and W. The function q ] is minimized by alternating between optimizing 
the spatial model parameters X conditional on the weights W, and optimizing the 
weights W conditional on the spatial parameters X until convergence occurs. In both 
the spatial parameter estimation substep and the weight estimation substep, we use a 
modified Fisher scoring method with - H + g  as the search direction, where H + is the 
Moore-Penrose inverse of the expected Hessian E(V 2q ] ) and g is the gradient Vq ] .  In 
the weight estimation substep, the weights are kept nonnegative by means of an active 
constraint algorithm described by Winsberg and Ramsay (1983). A safeguarded qua- 
dratic interpolation method is utilized to determine the stepsize. The algorithm used in 
the M-step is very similar to the numerical estimation method used in other maximum 
likelihood multidimensional scaling procedures (e.g., Winsberg & Carroll, 1989a). 

Once new estimates of X and W are available, a new estimate of o 2 can be 
computed as follows 

1 N T 

~ 2  = _ _  E E Z} O)(yi -- ~t)'(Yi - ~,), ( 2 5 )  
N M .  

I = l  t = l  

w h e r e  ~t denote the mean dissimilarities based on the new estimates of X and W. 
In the M-step, we also need to compute a new estimate of~.. Maximizing (19) with 

respect to k subject to (4) gives 

E l  

,~t N (26) 

Schematically, the EM algorithm can be outlined as follows: 

1. Initialize the iteration index a: a ~-- O. 
Obtain initial parameter estimates X ('0, W (~), o "2c°~, and 2~ ('~) . 

2. E-step. Compute Z ('~) = ((zi(t~)))with 

Zi (a) = 

A~'~)exp[ -(y/-8~'~))'(y/-8~a))]2o.2<~ ~ 

T [ (y i  _ ~s(a)) , (y i  -- 8(a))"  
exp [- 

s = 1 2 ° ' 2 ( a )  

3. M-step. Compute new estimates of X and W by minimizing the weighted least 
squares function (24) with 

N 

E z )y/j  
i = 1  

Y t j k  -- F t  , 

and 
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N 

F, = E Z}~ ), 
i=1 

subject to (7), (8), and (9). 
Compute a new estimate of 02 using (25), where  ~t is based on the new esti- 
mates of X and W. 
Update the elements of k: 

4. Test for convergence: if 

A}a+l) = 1 N .E z}7 ). 
t = l  

log L(X (a+D, W (a +1), o -2(a+D, K("+D[Y) - log L(X (a), W (a), o -2(a), k(a)lY) < 
81, or  
log L(X (a+ D, W(a+l), 02(a+ 1), k(n+l)[y) _ 
log L ( X  (a-4), W(a-4) ,  o.2(a-4), k(a-4)[y) < e2 ' 

terminate. (Currently, e 1 = 0 and e 2 = 0.001 is used.) 
5. Increment a: a ~-- a + 1. 

Go back to Step 2. 

Initial parameter estimates can be computed by performing a K-means clustering on the 
dissimilarity data Y (with K - T). The means of the M variables for cluster t can be 
used as Ytjk in (24) to arrive at initial estimates of X and W. These initial estimates can 
be used to compute an initial estimate of o .2 using (25). An alternative method for 
computing initial parameter estimates is to perform an INDSCAL (Carroll & Chang, 
1970) analysis on Y and to group the subjects into latent classes on the basis of the 
derived individual subject weights. Alternatively, the subjects may be grouped ran- 
domly to start. With each procedure, the relative cluster sizes can be used as an initial 
estimate of k. 

The algorithm described in this section has been implemented in a transportable 
Fortran program which is available upon request. 

Choosing the Appropriate Model 
In most cases one does not know the appropriate number of classes T nor the 

appropriate number of dimensions R in advance. The usual procedure in maximum 
likelihood multidimensional scaling for choosing the number of dimensions for a spatial 
model with no weights (or alternatively put, one class) is to compare the AIC (Akaike, 
1977) and BIC (Schwarz, 1978) statistics and choose the number of dimensions corre- 
sponding to the minimum value of these statistics. Here, AIC and BIC statistics may 
not be used to select among solutions with differing numbers of latent classes, because 
in such case the regularity conditions are not satisfied (see McLachlan & Basford, 
1988). However, conditional on a given number of latent classes, the regularity condi- 
tions obtain, and one may select the appropriate spatial model or dimensionality for one 
class, two classes, etcetera, using a likelihood ratio test or information criteria. Fur- 
thermore, the usual procedure for deciding on the appropriate number of latent classes 
would require testing whether a solution for T + ! latent classes gives a significantly 
better fit than a solution for the same model (that is the same dimensionality) with T 
classes. Unfortunately, because in such case the regularity conditions do not hold, the 
relevant likelihood-ratio statistic for testing T versus T + l latent classes is not as- 
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TABLE 1 

Goodness-of-fit Kesults for the Artificial Data  Example 
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No. of No. of Model Degrees Log AIC BIC 

Classes Dimensions of Freedom Likelihood 

1 2 16 300.5 -568.9 -495.7 

1 3 22 301.0 -558.0 -457.3 

1 4 27 301.1 -548.2 -424.6 

2 2 20 670.1 -1300.1 -1208.5 

2 3 29 672.6 -1287.2 -1154.4 

ymptotically distributed as a chi-square with known degrees of freedom and neither 
likelihood-ratio tests nor information criteria such as AIC and BIC can be used. How- 
ever, conditional on a given dimensionality, one may use a Monte Carlo significance 
testing procedure proposed by Hope (1968) and first applied in the context of latent 
class analysis by Aitkin, Anderson, and Hinde (1981). The procedure is as follows: (a) 
determine the parameter estimates X, W, 6 "2, k for a T-class model; (b) draw S - 1 
random samples 9 of size N from the T-class population with parameters X, W, 6-2, ~.; 
(c) fit the R-dimensional CLASCAL model with T and T + 1 latent classes to each of 
the generated samples Y; (d) compute the relevant likelihood statistic for comparing the 
T-class and (T + l)-class solution; (e) reject the T-class solution at significance level a 
in favor of the (T + 1)-class solution if the value of the likelihood-ratio exceeds S(1 - 
a) of the values of the statistic obtained for the Monte Carlo samples Y. A minimal 
value of S for a significance level a = 0.05 is 20. The power of the test increases as S 
becomes larger. 

In practice, we have found that for a given number of latent classes, the lowest 
values of both AIC and BIC occur for the same spatial model (i.e., for a model with the 
same number of dimensions). This selected spatial model is then used in the Monte 
Carlo procedure described above to determine the appropriate number of classes. In 
the next section, we illustrate this model selection procedure with the latent class 
weighted Euclidean model, CLASCAL, on both real and artificial data. 

Applications 

Artificial Data Example 
Two examples will be presented in this section. The first is an artificial example. A 

random configuration was seeded in two dimensions for nine stimuli. The following 
weight vectors were chosen for the two latent classes: (0.66, 1.0)' and (1.34, 1.0)'. The 
model distances for each of two latent classes were calculated. Twenty subjects were 
then randomly assigned to one of the two classes and then Gaussian error with a 
standard deviation equal to 15 percent of the standard deviation of the model values 
was added to the model distances for each subject to constitute the data. AIC and BIC 
statistics were computed for the solutions obtained for two, three, and four dimensions 
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FIGURE 1. 

True  and recovered c o m m o n  space for the artificial data  example .  The  c rosses  indicate the  true locations,  
while the dots indicate the recovered  locations.  

for  both the one-class and the two-class models. These goodness-of-fit statistics are 
summarized in Table 1. Both AIC and BIC select the appropriate number  of  dimensions 
(i.e., two) for  both the one-class and the two-class case. On the basis of  the Monte  Carlo 
significance test with S = 20, we select two as the appropriate number of  classes. As 
can be seen from Figure 1, the true configuration is recovered  well. The  poster ior  
probabilities hit(X, ~/, &2, 2k) listed in Table 2, classify each subject correctly.  The true 
latent class weights are well recovered also. The final estimates are: Wl = (0.652, 
1.012)' and w2 = (1.348, 0.988)'. 

The Monte Carlo significance tests for comparing one versus two classes and two 
versus three classes took respectively 212 and 417 CPU seconds on a DEC DS5820 
computer  to complete.  

Real Data Example 

The second set of  data concerns nine stimuli each of  which corresponds to the 
same short musical selection (a piece of  Debussy) played in a particular simulated 
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TABLE 2 

Posterior Probabilities for the Artificial Data Example 
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Subject Class 1 Class 2 

1 0.000 1.000 

2 0.000 1.000 

3 0.000 1.000 

4 0.000 1.000 

5 0.000 1.000 

6 1.000 0.000 

7 1.000 0.000 

8 0.000 1.000 

9 0.000 1.000 

I0 0 . 0 0 0  1.000 

11 0 . 0 0 0  1.000 

12 1.000 0.000 

13 1.000 0.000 

14 0.000 1.000 

15 0.000 1.000 

16 0.000 1.000 

17 1.000 0.000 

18 1.000 0.000 

19 1.000 0.000 

20 0.000 1.000 

concert hall. The nine simulated halls differ on two physical dimensions: clarity-80 and 
reverberation time. A hall has the effect of transforming sound. To characterize a hall, 
the effect of the hall on an acoustic impulse is measured. Clarity-80 and reverberation 
time are typical measures of the way an impulse is transformed by a hall. More spe- 
cifically, clarity-80 is the ratio of the response energy arising in the first 80 milliseconds 
to the total response energy, while the reverberation time is a measure of the decay time 
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FIGURE 2. 

The  nine concer t  halls plotted in the plane defined by the two physical  variables. 

of the response energy. The nine concert halls are plotted in the plane defined by the 
two physical variables in Figure 2. 

Dissimilarity data were collected from fifteen subjects for the nine concert halls. 
Both the AIC and BIC criteria select a three-dimensional representation for both the 
one-class and the two-class cases (see Table 3). The Monte Carlo likelihood-ratio test 
described in the previous section yields two as the appropriate number of  classes. 
Incidentally, the INDSCAL solution for these data was jackknifed using the special 
jackknife for multidimensional scaling devised by de Leeuw and Meulman (1986), 
showing that the three-dimensional solution was most stable. Also, these data were 
analyzed by one of the authors using the extended INDSCAL model proposed by 
Carroll and Winsberg (1991) and a three-dimensional solution with no specificities and 
no spline transformation gave the best fit to the data. However,  the CLASCAL solution 
appears to offer the clearest interpretation of the resulting dimensions and weights. The 
posterior probabilities listed in Table 4, reveal that the subjects are well-classified. The 



SUZANNE WINSBERG AND GEERT DE SOETE 

TABLE 3 

Goodness-of-fit Results for the Real Da t a  Example 

327 

No. of  No. of Model Degrees Log AIC BIC 

Classes Dimensions of Freedom Likelihood 

1 2 16 -1055.3 2142.6 2211.2 

1 3 22 -1018.7 2081.3 2175.7 

1 4 27 -1014.6 2083.3 2199.2 

i 5 31 -1014.3 2090.7 2223.7 

2 2 20 -1037.3 2114.5 2200.3 

2 3 29 -988.2 2034.5 2158.9 

2 4 38 -982.6 2041.2 2204.3 

estimates of the latent class weights for two classes are w I = (1.047, 0.865, 0.431)' and 
WE = (0.952, 1.134, 1.569)'. 

The private spaces obtained for the two latent classes with the two-class three- 
dimensional CLASCAL model are displayed in Figure 3. One of the challenges of 
interpreting the solution is to see why two physical dimensions give rise to three 
psychological dimensions. Upon examining the upper panels of Figure 3 (for Dimension 
l versus Dimension 2) it is noted that the first two dimensions are the same for both 
classes. Indeed, the two classes are distinguished by the weights on the third dimen- 
sion. Comparing Figure 2 with the upper panels of Figure 3 reveals that in the solution 
the two physical variables are rotated and that the reverberation time variable is com- 
pressed for smaller clarity-80. Moreover, stimuli F and G are seen as having greater 
reverberation time instead of lower clarity-80; that is, they are correctly perceived as 
having a smaller ratio of early energy to late energy, but this is incorrectly attributed to 
an increase in the late energy rather than a decrease in the early energy. The third (one 
might say extra) dimension is important for only one of the two latent classes (see lower 
panels of Figure 3). This third dimension separates F and to a smaller extent G from the 
rest of the stimuli. Interestingly enough when stimulus F was constructed, the clarity-80 
was reduced naturally by decreasing both the direct sound and first reflections as 
compared to the total energy, but for this particular stimulus the ratio of direct sound 
to first reflection was considerably smaller than was the case for the other stimuli and 
this reduction in direct sound was apparently picked up by the second latent class. 

Conclusion 

The latent class approach to fitting the weighted Euclidean distance model elabo- 
rated in this paper yields parsimonious interpretable solutions for dissimilarity data. A 
Monte Carlo significance test coupled with AIC and BIC statistics provides a rationale 
for model selection. 
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TABLE 4 

Posterior Probabilities for the Real Data Example 

Subject Class 1 Class 2 

1 1.000 0.000 

2 0.990 0.010 

3 0.000 1.000 

4 0.996 0.004 

5 0.000 1.000 

6 1.000 0.000 

7 1.000 0.000 

8 0.000 1.000 

9 0.000 1.000 

10 0 . 0 0 0  1.000 

11 0 . 9 8 1  0.019 

12 0 . 0 0 0  1.000 

13 0 . 0 0 0  1.000 

14 0 . 0 0 0  1.000 

15 1 . 0 0 0  0.000 

The CLASCAL model assumes a common variance for all stimulus pairs. Some- 
times, dissimilarity data exhibit a typical mean-variance relationship (e.g., Ramsay, 
1977). In such a case, the assumption of independent normal distributions with a com- 
mon variance can be easily replaced by the assumption of independent lognormal 
distributions or independent normal distributions with standard deviations proportional 
to the means. In the paper we advocated the use of a Monte Carlo significance test for 
deciding on the appropriate number of classes. This procedure usually works quite well 
although with large data sets it can be very computationally intensive. It would be 
interesting to investigate to what extent recently proposed modified information criteria 
(see e.g., Bozdogan, I987, 1992) can be used to choose the correct number of latent 
classes. Finally, the CLASCAL model can be extended to included specific dimensions 
as in the extended INDSCAL model (Winsberg & Carroll, 1989b) and nonmetric or 
quasi nonmetric (spline) transformations (Winsberg & Carroll, 1989a). 
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FIGURE 3.  

The two private spaces obtained with the two-class three-dimensional CLASCAL model. 
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