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Abstract

wA contrast method originally proposed by Spiegelman C.H. Spiegelman, Calibration: a look at the mix of theory, meth-
xods and experimental data, presented at Compana ’95, Wuerzburg, Germany. is modified to pretreat multivariate data for

classification. Three NIR data sets and one pollution data set are used as examples. Our results show that the contrast method
greatly improves the ratios of between- to within-class variance. It is more powerful than offset correction, SNV, first- and
second-derivative methods in the cases studied. This conclusion does not depend on the type of classifier used. Regularised

Ž . Ž .discriminant analysis RDA and partial least squares PLS2 with univariate feature selection based on Fisher’s ratio were
applied here. There is a risk that chance correlations occur after the contrast pretreatment. The chance correlation decreases

Ž .after first eliminating un-informative variables using the modified Uninformative Variable Elimination UVE -PLS method.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the analysis of multivariate data such as NIR
data, data pretreatment plays a very important role.
Proper pretreatment can greatly improve the results,
since it removes or minimises the multiplicative in-
terferences due to scatter, particle size effects, base-
line shifts, instrument noise, etc. Many data pretreat-
ment methods have been proposed in the literature

Ž .such as multiplicative scatter correction MSC , first
derivative, second derivative, second-derivativer

Ž . Ž .logarithm SDL , standard normal variate SNV and
w xoffset correction 1–4 . Offset correction can only

correct parallel shifts in the baseline, and cannot cor-
rect for the slope changes in the baseline. The deriva-
tive and SDL methods can remove both parallel shifts
and slope changes, but at the same time enhance the
noise in the spectra. MSC is based on using the mean
spectrum of the data set, so that one cannot treat
spectra individually. The SNV method can be ap-

w xplied to individual spectra 5 and yields good re-
w xsults, but is subject to a closure problem 6 . Re-

cently, Spiegelman suggested a new method based on
contrasts to pretreat spectral data prior to calibration
w x7 . In this paper, this method is adapted and applied
for classification purposes. Other data pretreatment
methods such as offset correction, first derivative,
second derivative and SNV are also applied for com-

Ž .parison by using partial least squares PLS2 and
Ž .regularised discriminant analysis RDA as classi-

fiers.

2. Theory

2.1. Using contrasts as data pretreatment for classi-
fication

Spiegelman determines all pairwise contrasts, i.e.,
all pairwise differences of absorbance at different

w xwavelengths 7 . In this way, he includes, in a certain
sense, the offset-correction method and the first
derivative. Indeed, in the offset correction method,
one subtracts a given value such as the mean value
of the absorbance at the first few wavelengths from
the spectrum to correct for the baseline shift. The first
derivative method is based on subtraction of ab-
sorbance at the neighbouring wavelengths. More-
over, in this way one includes automatically the
comparison of certain important features, e.g., two
peaks.

There are two steps in Spiegelman’s contrast
method: the first one is to create the new variables,
and the second one is to select a subset of those new
variables. Suppose X is a spectral data matrixn=m

with n objects and m wavelengths. In the first step
of this method, a new matrix is formed by taking the
ith column minus the jth column provided that j is
greater than i. The m original columns of the X ma-
trix are also included in this new matrix. A new ma-

Ž Ž . .trix with m my1 r2qm columns is formed.
In the second step, Spiegelman selects m columns

from this matrix. His application was calibration,
while ours is classification. Therefore, in this second
step, we calculate Fisher’s criterion, i.e., the ratio of
between- to within-class variance for each column of
the new matrix:

k k
2 2e s n y yy n y1 s 1Ž .Ž .Ž .Ý Ýi j ji P i j ji

js1 js1

where js1, 2, 3, . . . , k, k is the number of classes,
n is the number of objects in class j, y denotes thej ji

mean absorbance of the objects belonging to class j
at the ith wavelength, y denotes the mean ab-P i

sorbance of the objects belonging to all classes at the
ith wavelength and s is the standard deviation of theji
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absorbance of the objects belonging to class j at this
wavelength. For each variable, the Fisher’s weight is
calculated, and the variables are selected which have
the highest Fisher’s weights. The m columns with the
highest Fisher’s criterion are selected in the new ma-
trix, X .new

Ž .When the number of variables m of the original
Ž Ždata is large, such as for NIR data, the number m m

. .q1 r2 of columns of the new matrix created after
Ž .the first step is extremely large, which requires too

much computer memory. To solve this problem, we
propose to perform the second step during the first
step instead of after the first step. We start with X n=m

containing the original variables as a temporary new
matrix, and estimate their Fisher’s ratios. During the

Žfirst step, after a few new variables instead of all new
.variables have been created, their Fisher’s ratios are

calculated. Those new variables together with the
variables in the temporary matrix are ranked accord-
ing to their Fisher’s ratios, and the first largest m
variables are selected to replace the variables in the
temporary matrix. In the end, the variables remaining
in the matrix are the same as those obtained using a
two-step procedure. The modified algorithm is as fol-
lows:
1. Obtain the initial matrix X with n rows and mnew

columns by using all the variables in X, and esti-
mate their Fisher’s ratios.

Ž .2. For a given variable i is1 to my1 , calculate
the differences of variables of X between i and j
Ž .js iq1 to m as the new variables, estimate
Fisher’s ratios for these new variables and add
these new variables to X , yielding an extendednew

matrix X . Values of the new variables cannew – ext

be positive, negative or zero.
3. Rank the variables in X according to theirnew – ext

Fisher’s ratios in decreasing order.
4. Update the X matrix by keeping only the firstnew

m variables in X , i.e., deleting the lastnew – ext

variables.
5. Repeat steps 2–4, until i reaches my1, then the

final X is the output of the pretreated X.new

The resulting n=m matrix is exactly the same as
the one that would be obtained with the two-step ap-
proach. This algorithm can easily be run on a per-
sonal micro-computer without memory problem.
However, it needs slightly more computing time than
the two-step approach.

2.2. Classifier

In this study, RDA and PLS2 are used as classi-
fiers. RDA has been described in the paper of Fried-

w x w xman 8 and in our previous work 9 . In PLS, if there
is only one dependent variable, PLS1 is used; other-
wise one uses PLS2. The difference is that PLS2 can
simultaneously model several correlated columns in
matrix Y, while PLS1 builds separate models for each

w xcolumn in matrix Y. In PLS2 10 , the dependent
variables of matrix Y are defined as binary values
with 1 for the corresponding class and 0 for the other

w xclasses. For instance, 0 1 0 is used as y vector of
an object from class 2. The correct classification rate
Ž .CCR based on leave-one-out cross-validation is
used as the classification result. In PLS2, the CCR is

w xcalculated as described in Refs. 11,12 . For each ob-
ject, the predicted vector of y is calculated. The ob-
ject is assigned to the class for which the predicted
value is the only one higher than 0.5. For instance, if

w xthe predicted y is 0.1, 0.9, 0.2 , the object is as-
wsigned to class 2. When the prediction is, e.g., 0.1,

x w x0.9, 0.8 or 0.1, 0.4, 0.2 , the object is regarded as a
misclassified object. When only two classes are stud-
ied, one can also use PLS1. We prefer to use PLS2
because it is more strict. For instance, if the pre-

w xdicted y is 0.1, 0.2 , the object is more reasonably
regarded as a misclassified object. When PLS1 is ap-
plied, the object is always assigned to one of the two
classes.

2.3. UVE-PLS and its modification

Uninformative Variable Elimination method
Ž .UVE-PLS was recently developed to eliminate un-

w xinformative variables for calibration of NIR data 13 .
The original data are used to build the model in this
method. Artificial random variables are added to the
data as a reference so that those variables which play
a less important role in the model than the random
variables are eliminated. The importance of variables
is estimated by the ratios of b-coefficients to their
standard deviations in the PLS1 model, where b-
coefficients refer to coefficients in the final PLS re-
gression vector. The standard deviations of b-coeffi-
cients are obtained through leave-one-out cross-
validation. Several versions of UVE-PLS were de-

w xscribed in Ref. 13 . Here the simplest version is used
and adapted. PLS2 is used instead of PLS1 for clas-
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sification of data with more than two classes, and
CCR is used instead of root mean square error of

Ž .prediction RMSEP . The modified algorithm is as
follows:
1. With all variables, use PLS2 to estimate CCR

based on leave-one-out cross-validation. The opti-
Ž .mal number n of factors is considered to be thef

one for which CCR reaches the highest value.
2. The data matrix is expanded by adding the same

number of random variables multiplied by 10y10

so that these variables do not influence the model.
3. With the expanded data matrix, n b-coefficient

matrices B are obtained by PLS2 with n2 m=p f

factors based on the leave-one-out cross-valida-
tion, where n is the number of objects, m the
number of variables, p the number of classes.

4. For the first column of B, calculate the ratio of the
absolute value of the b-coefficient to its standard

Ž .deviation for each row variable separately.
5. Use the maximum value of the ratios for rows m

Ž .q 1 to 2m random variables as the threshold
value, and select a subset of variables whose ra-
tios are higher than the threshold value.

6. If there are more than two classes, repeat steps 4–5
py1 times for each of the first py1 columns of
B. In the end, obtain py1 subsets of variables,
and find the common variables in these subsets.

7. Use these common variables to build the optimal
PLS2 model based on leave-one-out cross-valida-
tion, and provide the CCR for this model.

8. Repeat steps 2–7 with n sn y1, until the opti-f f

mal CCR does not increase. The CCR and subset
of the common variables are the final outputs of
UVE-PLS.

The modified UVE-PLS is used to eliminate the un-
informative variables. One can perform UVE-PLS
before or after data pretreatment. Here, UVE-PLS is
applied after data are pretreated by the contrast
method.

3. Experimental

3.1. Data

Four data sets were studied. Data sets 1–3 are NIR
w xdata sets which have been used in Refs. 11,14 . They

Ž .Fig. 1. The mean spectra for the two classes of data set 1. )Denotes the selected variables by a PLS with univariate feature selection and
Ž .b UVE-PLS.
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Fig. 2. The ratio of between- to within-class variance versus the index of the variables after ranking with different pretreatment methods
including the original data; data set 1.

Ž .Fig. 3. The classification results CCR for RDA based on cross-validation versus number of selected features.
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Table 1
Ž .The classification results CCR based on leave-one-out cross-

validation for RDA with the optimal number of selected variables
after different pretreatments; data set 1

Ž .Method Variables l, g CCR

Ž .Contrast 9 0, 1 0.874
Ž .Original 10 0.4, 0 0.684
Ž .Offset 10 0, 0.2 0.674
Ž .SNV 15 0.6, 0 0.768
Ž .First DER 25 0.6, 0.2 0.621
Ž .Second DER 19 1, 1 0.653

were measured with a NIR instrument Bran q
Ž X.Luebbe. The spectra are presented as log 1rR ab-

sorption values, where RX is the reflectance of the
sample versus that of a white ceramic reflectance. For
convenience, the wavelength is expressed by the in-
dex in the resulting data matrix. Data set 4 is an in-
dustrial pollution data set; it has also been used in

w xearlier publications 14,15 .
ŽData set 1 contains 95 spectra 1130–2152 nm,

.512 wavelengths of pure and impure butanol. The
pure class consists of 42 spectra, and the impure class
consists of 53 spectra containing different concentra-

Ž .tions of water from 0.02% to 0.32% . The goal is to
identify if a sample is pure or impure in order to con-
trol the manufacturing process in industrial practice.

Data set 2 is an artificial data set. The basis are
the 42 spectra of pure butanol of data set 1. To this,
another spectrum was added to produce a data set for
which the degree of difficulty can be adapted. Both
spectra are measured in the same wavelength range
Ž .512 wavelengths . The 42 butanol spectra are ran-
domly divided into two subsets a and b with the same
number of objects. Subset a is used as class 1. Class
2 is made of 99% subset b and 1% of the other spec-
trum of polymer.

ŽData set 3 consists of 60 spectra 1376–2398 nm,
.512 wavelengths of three batches of excipients which

are made by mixing cellulose, mannitol, sucrose,
sodium saccharin and citric acid in different propor-
tions. Each class contains the spectra measured for 20
samples of the same batch of excipients.

Data set 4 contains 49 objects related to two dif-
Žferent kinds of pollution galvanisation and steel-

.works sludges with 10 variables including the pH,
Cd, Cr, Pb, Cu, residual at 1058C, residual at 6608C,
Zn, CNy and Ni. Three outlier objects were elimi-

Ž .Fig. 4. The optimal classification result CCR for PLS based on cross-validation versus number of selected features.
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w xnated 15 . Class 1 consists of 30 objects and class 2
consists of 19 objects.

4. Results and discussion

4.1. Data set 1

Fig. 1 shows the mean spectra for the two classes
for this data set. There is a difference between the two
classes only in the region of wavelengths 380–440
which corresponds to the characteristic wavelength of
the impurity of water.

As described earlier, Spiegelman’s contrast
method is an extension of derivative and offset cor-
rection methods. One expects that the contrast method
will give similar results to these other methods. To
compare different pretreatment methods, one first
calculates the ratio of between- to within-class vari-
ance for each variable separately, then ranks the ratio
from large to small. After ranking, the ratio is plotted
as a function of the index of the variables for the
original data and transformed data with different

Table 2
Ž .The classification results CCR based on leave-one-out cross-

validation for the PLS classifier with the optimal number of se-
lected variables after different pretreatments; data set 1

Method Variables Factors CCR

Contrast 9 1 0.874
Original 24 2 0.579
Offset 17 17 0.600
SNV 21 4 0.790
First DER 24 4 0.632
Second DER 24 1 0.615

methods: contrast, first derivative, second derivative,
offset correction and SNV. Fig. 2 shows that the con-
trast method gives higher Fisher ratios than all other
methods.

We classify the objects first using RDA with se-
lected features according to Fisher’s criterion, since
RDA cannot be directly applied to NIR data because
of the singularity of the variance–covariance matrix
w x9 . Fig. 3 shows the results for RDA with the data
set pretreated by the contrast method. As the number
of selected variables changes from 1 to 25, CCR first

Ž .Fig. 5. The classification result CCR for PLS based on cross-validation versus number of factors with the optimal number of selected
features.
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Table 3
Ž .The classification results CCR for PLS and UVE-PLS when an independent test set is used; LOO—the results of leave-one-out cross-

validation for the training set

Ž . Ž .Data set Method No. of objects No. of objects No. of variables No. of factors CCR LOO CCR test set
Ž . Ž .training set test set

1 PLS 74 21 5 1 0.851 0.810
1 UVE-PLS 74 21 166 1 0.851 0.857
2 PLS 30 12 1 1 1.000 1.000
3 PLS 45 15 all 7 1.000 1.000
3 UVE-PLS 45 15 4 2 1.000 1.000
4 PLS 39 19 4 4 0.923 0.900
4 UVE-PLS 39 19 6 4 0.897 0.900

Ž . Ž .Fig. 6. a The mean spectra for the two classes of data set 2; b the difference between the two mean spectra for classes 1 and 2 versus the
Ž .index of the wavelengths. )Denotes the selected variables by PLS; c the mean spectra of polymer.
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Fig. 7. The ratio of between- to within-class variance versus the index of the variables after ranking with different pretreatment methods
including the original data; data set 2.

increases and then becomes constant at the maxi-
mum value of 0.874 when more than eight selected
variables are used. The optimal results for RDA with

Žthe studied pretreatment methods including no pre-
.treatment are listed in Table 1. The results show that

the contrast method gives the best result of all pre-
treatment methods.

PLS2 is then applied as classifier. The number of
features and number of factors are systematically
changed from 1 to 25 after pretreatment by the con-
trast method. When the number of factors is larger

Table 4
Ž .The classification results CCR based on leave-one-out cross-

validation for RDA with the optimal number of selected variables
after different pretreatments; data set 2

Ž .Method Variables l, g CCR

Ž .Contrast 1 1, 0 1.000
Ž .Original 6 1, 0 0.905
Ž .Offset 3 0.8, 0 0.857
Ž .SNV 4 0.4, 0 0.810
Ž .First DER 5 0, 0.8 0.881
Ž .Second DER 4 0, 0.2 0.714

than the number of variables, the CCR is set to 0. For
a fixed number of features, the optimal CCR is cal-
culated.

Fig. 4 demonstrates the optimal CCR as a func-
tion of the number of features. We can see that when
nine features or more are selected, PLS2 gives the

Ž .best result CCR s 0.874 . With the nine features,
PLS2 gives the best result with one PLS component
Ž .Fig. 5 . The nine features are the differences of the

Ž . Žnine paired original wavelengths: 431–433 , 431–
. Ž . Ž . Ž . Ž .432 , 431–438 , 431–436 , 431–437 , 431–439 ,

Table 5
Ž .The classification results CCR based on leave-one-out cross-

validation for the PLS classifier with the optimal number of se-
lected variables after different pretreatments; data set 2

Method Variables Factors CCR

Contrast 1 1 1.000
Original 2 1 1.000
Offset 3 1 0.976
SNV 2 1 1.000
First DER 2 1 1.000
Second DER 2 1 1.000
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Ž . Ž . Ž .431–441 , 431–435 and 380–441 . These wave-
lengths are situated in the region of the characteristic

Ž .peak of the water impurity Fig. 1a .
The best results of PLS with all studied pretreat-

ment methods are listed in Table 2. The results show
that the contrast method gives a better result than all
other studied methods, and that the best CCR is the
same as that for RDA.

Being similar in this case to a derivative pretreat-
ment method, the noise in the signal should be en-

larged in the contrast method. Also, in the first step
Ž .of Spiegelman’s method, m mq1 r2 new variables

are formed from combinations of the difference of the
original m variables. For instance, if m s 500,
125 250 new variables are created. The number of
new, somewhat noisy, variables is so large that the
probability of chance correlation is increased; this
means that some noise variables which have high
Fisher ratios by chance, therefore, may be selected in
the second step of the Spiegelman’s method. Al-

Ž .Fig. 8. The mean spectra for the three classes of data set 3. )Denotes the selected variables by a PLS with univariate feature selection and
Ž . Ž .b UVE-PLS; c the difference between the two mean spectra for classes 1 and 2 versus the index of the wavelengths; )Denotes the se-
lected variables by UVE-PLS.
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Fig. 9. The ratio of between- to within-class variance versus the index of the variables after ranking with different pretreatment methods
including the original data; data set 3.

though leave-one-out cross-validation is used in the
classification step, chance correlations still may lead
to over-optimistic results. To test this, an indepen-

w xdent test set was used to validate the results 14 . The
data sets were divided into training sets and test sets,

w xusing a Kennard–Stone selection procedure 11 . The
principle of Kennard–Stone method is to select a
subset of objects that are uniformly distributed over
the whole object space. The data are first pretreated
by the contrast method. With the selected variables,
PLS is applied to the training set to obtain the model
by cross-validation, and the final model is evaluated
using the independent test set. The results are shown
in Table 3.

For PLS, the CCR from cross-validation of the
training set is 0.851, while the CCR of the indepen-

Ž .dent test set is somewhat lower 0.810 . These re-
sults indicate that chance correlations may occur. For
this reason, we applied UVE-PLS to delete the un-in-
formative variables after the contrast pretreatment.
With the remaining informative variables, PLS is
used as classifier. The results in Table 3 show that
UVE-PLS improves the CCR for the independent test

set compared to PLS, and the difference between the
training set and the independent test set is reduced,
because more wavelengths in the region of the char-

Ž .acteristic peak are selected Fig. 1b than for PLS
Ž .Fig. 1a . This indicates that UVE-PLS decreases the
chance correlation.

4.2. Data set 2

Fig. 6a shows the mean spectra for the two classes
for this data set. There are some differences between

Table 6
Ž .The classification results CCR based on leave-one-out cross-

validation for RDA with the optimal number of selected variables
after different pretreatments; data set 3

Ž .Method Variables l, g CCR

Ž .Contrast 2 0.2, 0 0.967
Ž .Original 23 0.8, 0 0.633
Ž .Offset 24 0.6, 0.2 0.667
Ž .SNV 20 1, 0.8 0.733
Ž .First DER 23 0.4, 0.2 0.800
Ž .Second DER 24 0.8, 0.4 0.633
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Table 7
Ž .The classification results CCR based on leave-one-out cross-

validation for the PLS classifier with all variables and the optimal
number of selected variables after different pretreatments; data set
3

Method Variables Factors CCR Variables Factors CCR

Contrast all 4 1.000 6 3 0.967
Original all 8 1.000 25 5 0.600
Offset all 7 1.000 12 7 0.650
SNV all 7 1.000 20 5 0.767
First DER all 6 1.000 7 3 0.933
Second DER all 5 1.000 20 4 0.900

the absorbances in the region of wavelengths 300 to
500, due to the fact that class 2 contains 1% of the
impurity.

Fig. 7 shows that the contrast method gives higher
Fisher ratios than all other methods. Table 4 lists the
comparison of the results with different pretreatment
methods when RDA is used. It shows that the con-
trast method gives a higher CCR than all other pre-
treatment methods. When PLS is used as classifier
Ž .Table 5 , the contrast method gives higher CCR than

Table 8
Ž .The classification results CCR based on leave-one-out cross-

validation for RDA with the optimal number of selected variables
after the contrast and no pretreatments; data set 4

Ž .Method Variables l, g CCR

Ž .Contrast 3 0, 0 0.939
Ž .Original 7 0.2, 0 0.939

the offset correction, and the same CCR as the other
methods. However, the contrast method performs
better than the other methods in the sense that it uses
the lowest number of variables.

To test chance correlation, the data set was
divided into training sets and test sets by the Ken-
nard–Stone algorithm. The data are pretreated by the
contrast method. The comparison results with PLS are
also listed in Table 3. For PLS, the CCR from
cross-validation of the training set is 1.000 with one
selected variable and one factor, and the CCR of the

Ž .independent test set is also the same 1.000 . Those
results indicate that there is no chance correlation.

Ž .PLS Fig. 6b selects two wavelengths where there

Fig. 10. The ratio of between- to within-class variance versus the index of the variables after ranking with the contrast-pretreated data and
original data; data set 4.
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Table 9
Ž .The classification results CCR based on leave-one-out cross-

validation for the PLS classifier with all variables and the optimal
number of selected variables after the contrast and no pretreat-
ments; data set 4

Method Variables Factors CCR Variables Factors CCR

Contract all 4 0.918 7 3 0.959
Original all 2 0.898 3 3 0.918

are relatively large absorbance differences between
the two classes, and they correspond to the two char-
acteristic peak regions of polymer near wavelengths

Ž .300 and 500 Fig. 6c .

4.3. Data set 3

This data set is used as an example with more than
two classes. Fig. 8a demonstrates that the differences
among the mean spectra for the three classes are dif-
ficult to be observed. Fig. 9 shows that the contrast
method gives the highest Fisher ratios of all the
methods. Table 6 shows that the contrast method
leads to a higher CCR for RDA than all other meth-
ods. Table 7 lists the comparison of the results with
different pretreatment methods for PLS. It shows that

the contrast method leads to a higher CCR for PLS
with feature selection than all other methods. It also
demonstrates that, when all variables are used, all

Ž .methods including no pretreatment give the same
Ž .CCR 1.0000 . However, the contrast method re-

quires the lowest number of factors. When 1 to 25
features are selected as the input of PLS, the CCR is
less good, which indicates that 25 features do not
contain enough useful information. Most of the
wavelengths corresponding to these selected vari-
ables are not situated in the characteristic peak re-

Ž .gion of wavelength 430 Fig. 8a . The comparison of
the results, when the contrast method and indepen-
dent test set are used, for UVE-PLS are also listed in
Table 3. It shows that UVE-PLS gives the same good

Ž .results CCRs1.0000 for both training and test sets.
However, UVE-PLS only selects four contrast vari-
ables, while PLS uses all variables. Most wave-
lengths corresponding to the four selected contrast
variables are in the characteristic peak region of

Ž .wavelength 430 Fig. 8b . Since the differences be-
tween classes are difficult to see in Fig. 8a,b, Fig. 8c
displays the difference between the two mean spectra
for classes 1 and 2 versus the index of the wave-
lengths. It demonstrates that most of the selected
wavelengths with UVE-PLS are situated in the re-

Fig. 11. The mean value"standard errors of the two classes for data set 4 versus the index of the variables; )Denotes the selected variables
Ž . Ž .by a PLS with univariate feature selection and b UVE-PLS.



( )W. Wu et al.rChemometrics and Intelligent Laboratory Systems 45 1999 39–5352

gion where there are relatively large absorbance dif-
ferences between classes. Moreover, UVE-PLS uses
two components to build the model, while PLS needs
seven components. The results suggests that UVE-
PLS eliminates the un-informative variables and sim-
plifies the model complexity.

4.4. Data set 4

This data set is used as an example when con-
trasts are applied to other kinds of data than NIR. For
this data set, only the contrast method is applied. No
other pretreatment methods are compared, since they
are specific for NIR. Fig. 10 shows that the Fisher
ratios are higher for the contrast-transformed data
than the original data. The results in Table 8 show that
the contrast method requires a lower number of vari-
ables for RDA. When PLS is used as the classifier,
the contrast method always gives better results
Ž . Ž .CCRs than the original data Table 9 . In Table 3,
the results of the independent test set show that the
CCR of the test set is lower than that of the training
set. However, after UVE-PLS is performed, the CCRs
of both data sets are similar. The chance correlation
is reduced by eliminating uninformative variables.

Fig. 11a,b show the mean value"standard errors
of the two kinds of sludges versus the index of the
variables after the data are normalised to eliminate the
scaling differences between the variables.

The selected variables with PLS and UVE-PLS are
displayed in Fig. 11a,b, respectively. The second

Ž .variable Cd is selected by PLS, but eliminated by
Ž .UVE-PLS. The relative amounts of Cd variable 2

Ž .and Ni variable 10 are correlated in nature due to
geochemical mobility. For UVE-PLS, the selected
variables correspond to the following six paired orig-

Ž . Ž . Ž . Ž . Ž .inal variables: 7–6 , 10–6 , 10–1 , 10–0 , 10–9
Ž . Ž .and 7–9 , where 10–0 denotes variable 10 of the

Ž .original data. This variable Ni is frequently used.
The concentration of Ni plays an important role in the
discrimination, because the difference between the
two kinds of sludges is large.

5. Conclusion

Spiegelman’s contrast method is modified to pre-
treat multivariate data for classification. Three NIR

data sets and one pollution data set are used as ex-
amples to study the power of the method. Our results
show that the contrast method greatly improves the
ratios of between- to within-class variance. It is more
powerful than offset correction, SNV, first and sec-
ond derivative methods or using the original data.
This conclusion does not depend on the classifiers
Ž .RDA and PLS2 with univariate feature selection
based on Fisher’s ratio. Our results indicate that the
selection of data pretreatment methods is more cru-
cial than selection of classifiers. The results of the
independent test set show that there is a risk of chance
correlation after the contrast pretreatment. The chance
correlation decreases after eliminating the un-infor-
mative variables by the modified UVE-PLS method.
However, one needs more data to critically compare
different pretreatment methods.
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