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Abstract

In this paper, a method is proposed to select subsets of variables in parallel factor analysis (PARAFAC), such that

information in the complete multi-way data set is preserved as much as possible. The information retained is measured by

means of the percentage of consensus in Procrustes analysis. The best N-way subset is obtained by applying a genetic algorithm

(GA) to optimize the consensus between the subset and the complete N-way data set in order to prevent exhaustive searching.

The method was applied to two industrial data sets: a three-way sensory data set and a four-way gas chromatography (GC) data

set. The results showed that the proposed method successfully identified structure-bearing variables in both data sets and that it

led to better subsets of variables than feature selection based on loadings.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multi-way analysis is gaining more and more inter-

ests in practical applications [1–5]. Hyphenated ana-

lytical techniques often lead to multi-way data arrays

[4], although they are sometimes not recognized as

such. In general, multi-way (also known as multi-mode

or multi-order) data are described by several sets of

variablesmeasured in a crossedway [2,6]. For instance,

a typical three-way sensory data set represents meas-

ures of a set of attributes (variables) on samples by

different judges. As the size of such data sets tend to

become larger and larger, demands to simplify the

model for easy interpretation constantly increase.

Parallel factor analysis (PARAFAC) is one of the

multi-way decomposition methods [1]. Other methods

are the Tucker3 method and unfolding two-way prin-

cipal component analysis (PCA) [2]. The latter con-

verts the multi-way structure of the data into a two-way

structure and then works with a bilinear decomposition.

Tucker3 is a truly multilinear method that takes into

account the multi-way structure, so that it is more

parsimonious than the unfolding method. As a simpli-

fied version of Tucker3, by forcing the core array to a

(super)diagonal form, the PARAFAC model is even

more condensed than that of Tucker3. In chemomet-
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rics, PARAFAC is more frequently applied to explore

multi-way data because of its properties of uniqueness

and simplicity [2,4,5]. It is a natural extension of

traditional two-way PCA. In PARAFAC, multi-way

data are decomposed into sets of scores and loadings

with the same number of columns (latent variables).

The number of latent variables (factors or components)

is much lower than the number of original variables, so

that the data can be visualised in a reduced dimensional

space. However, similar to PCA, PARAFAC does not

eliminate the original variables, as it uses all the

original variables to generate the new latent variables.

For interpretation purposes or future investigation, it

would often be very useful to reduce the number of

variables. Nowadays, due to the rapid development of

analytical techniques, the number of variables usually

is very large, which implies a lot of redundant infor-

mation. In a previous study, we proposed new feature

selection methods in PCA [7] and sequential projection

pursuit (SPP) [8]. In the present paper, the feature

selection methods are further extended from two-way

to three- or N-way analysis method using PARAFAC.

The method selects the bestN-way subset that keeps, as

much as possible, the structure information of the

complete multi-way data set when all variation of the

complete data is interesting.

2. Theory

2.1. Notation and nomenclature

In PARAFAC, to deal with several modes or ways,

it is necessary to specify the modes where subsets of

variables will be selected. We will assume that variable

selection applies to the last mode(s), the one(s) with a

large number of variables that are not of primary

interest. Such modes are called selection modes. In

contrast, the first mode(s) are of primary interest.

These are called the structure modes.

2.2. PARAFAC

PARAFAC is a natural extension of PCA [4],

which can be described as a bilinear decomposition

of data. The decomposition can be modeled as

xij ¼
XF

f¼1

aif bjf þ eij ð0Þ

where xij is the element at the ith row and jth column

of the data matrix X. A three-way PARAFAC model is

a trilinear decomposition of three-way data (xijk) [4],

which can be expressed as

xijk ¼
XF

f¼1

aif bjf ckf þ eijk ð1Þ

Similarly, an N-way data matrix can be modeled by

multilinear decomposition. With PARAFAC, a set of

matrices is obtained corresponding to each way (mode

or order). The first matrix (A) is often referred to as

score matrix, and the other matrices (B, C, . . .) are
called loading matrices. The score matrix correspond-

ing to samples, e.g. the first mode, is not normalized,

while each loading matrix is scaled to a sum of

squares equal to one. In order to simplify the nota-

tions, hereafter, both score and loading matrices will

be called loading matrices, as often done by authors

publishing in this field [2–4].

The number of factors (F) in the PARAFAC model

can be determined by various methods [2,9], such as

the percentage of variation, which is a simple and

effective way. A new efficient method developed by

Bro and Kiers [10], called the core consistency diag-

nostic (CORCONDIA), for determining the number of

components in PARAFACmodels is used to estimateF.

2.3. Feature selection method based on loadings

One straightforward way to locate important

original variables is based on loadings. For any

X I� J�K, a three-way data array with I rows,

J columns and K layers

Xs I� J�Ks, a three-way subset data array with

I rows, J columns and Ks selected layers

A I�F, the loading matrix of X in the first mode

As I�F, the loading matrix of Xs in the first mode

B J�F, the loading matrix of X in the second mode

Bs J�F, the loading matrix of Xs in the second mode

C K�F, the loading matrix of X in the third mode

Cs Ks�F, the loading matrix of Xs in the third mode

YA I�F, the prescaled matrix of A (total variance = 50)

YAs
I�F, the prescaled matrix of As (total variance = 50)

YB J�F, the prescaled matrix of B (total variance = 50)

YBs
J�F, the prescaled matrix of Bs (total variance = 50)
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factor, high loadings in absolute value indicate that

corresponding variables contribute more to the factor

than other variables. Usually the first few, e.g. F,

factors are regarded as significant. Then, for each

selection mode, one chooses the subset of variables

that exhibit the highest loadings among the F

factors.

2.4. Feature selection using Procrustes analysis and

genetic algorithm

Generalized Procrustes analysis (GPA) [12] is a

statistical method to match data sets that are measured

from the same samples or objects with different

variables. In the special case, when only two data

sets are involved, it is called Procrustes analysis. GPA

has been widely used in food science to analyze

sensory data [21], and recently, it has been applied

in mining genomic and proteomic data [22]. In

analytical chemistry, Procrustes analysis has been

applied for discriminant analysis [23,24], calibration

transfer [25], variable selection [11,26,27] and spec-

tral analysis [28,29]. In Brereton’s group, it was

applied to analyze mass spectral data [30,31] and

high-performance liquid chromatography data [32]. In

our group, Procrustes analysis was combined with

genetic algorithm (GA) for feature selection in PCA

[7] and SPP [8]. Here, the method is further modified

for PARAFAC.

The previously described method approximates the

loadings of the selection modes by setting low load-

ing values equal to zero. It is not clear how this

affects the loadings of the other mode(s) if the

reduced data set is subjected to a new PARAFAC

analysis. Ideally, one would like to retain the infor-

mation of the structure modes as it is contained in the

corresponding PARAFAC loading matrices. In the

following methods, we aim at selecting the N-way

subset that best retains the structure information of the

complete N-way data.

The similarity between the structure information of

the complete set and the subset is quantified by a

Procrustes criterion [11]. In PCA, the similarity

between the loading matrices of a candidate subset

and the complete data is measured by a percentage of

consensus value after optimal Procrustes matching

[7,8]. Here, for each structure mode, a similar proce-

dure is applied to assess the similarity between the

two PARAFAC loading matrices of an N-way candi-

date subset and the complete multi-way data. The total

structure information retained by the candidate N-way

subset can be obtained by considering the consensus

values of all structure modes.

The method proposed here seeks for subset selec-

tions that least affect the loading patterns of the

structure modes viewed separately. For exploratory

purposes, it usually suffices to produce and interpret

the loading patterns of the separate modes, and the

present method is perfectly geared to retain such

information with a reduced set of variables in the

selection mode. One should notice, however, that a

good Procrustes match of the loading patterns is a

weaker requirement than asking to preserve the com-

plete PARAFAC model structure. If the data are

generated by a process closely obeying a PARAFAC

model, then one expects only small departures in the

structure mode when variables in the selection mode

are omitted. A good Procrustes match of the loading

patterns is still a prerequisite for the stronger require-

ment of preserving the complete PARAFAC structure

of the structure modes. The prescaling, translation,

rotation and reflection in Procrustes match are com-

pletely different from the preprocessing of data before

PARAFAC. These operations are only on loading

matrix after PARAFAC to calculate the searching

criterion and have no effect on the N-way structure

in PARAFAC.

In Fig. 1, a three-way data array X (I� J�K) is

shown as an example to describe the procedure for

the estimation of the Procrustes criterion, where Xs

(I� J�Ks) is a three-way subset of X with Ks

selected variables (FVKs <K) in the third mode.

Suppose it is desired to preserve the structure infor-

mation in both the first and second modes, with the

first F factors after PARAFAC modeling of X and Xs,

respectively, A and As are the loading matrices for

the first mode, and B and Bs are the corresponding

loading matrices for the second mode. For mode 1,

prescaling is introduced to pretreat A and As, ensur-

ing both configurations (YA and YAs
) have equal

variances of 50, giving rise to total variance of

100. To measure the agreement between the two

configurations, YA and YAs
are subjected to Pro-

crustes analysis [12]. After optimally matching the

two matrices by means of translation, rotation and

reflection, a percentage consensus value [7,8] is
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calculated as the measurement of the similarity

between A and As by

VconA ¼ 2ðk1 þ k2 þ . . .þ kFÞ ð2Þ

where k1, k2, . . ., kF are the singular values of the

matrix YA
TYAs

. The same procedure is followed for

the other predefined structure modes, e.g. mode 2, to

obtain the consensus value (VconB
) expressing the

percentage of preserved information in the second

mode. The total retained structure information is

measured by the average of the two consensus

values:

Vconsensus ¼ ðVconA þ VconBÞ=2 ð3Þ

Vconsensus is a percentage value like VconA
and

VconB
. In the extreme case that the three-way subset

preserves all the structure information of the entire

three-way data, the consensus is equal to 100. The

procedure can be extended to more than three-way

situations.

The best N-way subset is the one with highest

Vconsensus among all possible subsets. An exhaustive

searching procedure is not computationally feasible.

In order to search for the best subset efficiently, a

genetic algorithm (GA) [13,14] is applied. This is

designated as GA–PARAFAC.

Genetic algorithms provide a powerful means to

search for a global optimum in a high-dimensional

space [15,16]. We applied the one developed by

Leardi et al. [13,14], originally applied to select the

best subset of variables to build a multiple linear

regression model in calibration. In PARAFAC,

feature selection can be made according to one

mode or multiple modes. To select variables from

a mode, a string vector is produced, containing the

same number of elements as the total number of

variables in the predefined feature selection mode.

To select variables from multiple modes such as

modes 2 and 3, the vector consists of two sub-

vectors corresponding to the two modes. The length

of the string vector is equal to the total number of

variables in modes 2 and 3. In the vector, the first

J elements in the first subvector correspond to the J

variables of mode 2 and the last K elements in the

second subvector of those in mode 3. Each element

is coded as 1 if the corresponding variable was

chosen and 0 if otherwise. The initial population of

solutions consists of a certain number of strings

(e.g. 30), which were randomly created and eval-

uated for their fitness. The fitness measures the

structural information preserved by each string

(subset) in the population, as evaluated by Eqs.

(2) and (3). Pairs of parent strings are selected

according to a probability value that is proportional

to the quality of their fitness. Then they undergo

‘reproduction’ by applying a crossover operator

(e.g. probability of 0.5) and, less frequently, a

mutation operator (e.g. probability of 0.02). This

results in two children strings for each pair of

parents. They become new candidates and join the

population forming a new generation. This proce-

dure is repeated a (prespecified) number of times

(e.g. 500). In the genetic algorithm (GA) [13], the

maximal number of variables retained (the 1s) must

be predefined by the user. Usually, it is decided

according to experience. Alternatively, one may try

Fig. 1. The flow chart for a three-way feature selection method.
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to decide according to a penalty function; since the

more variables selected, the higher consensus value

could be obtained.

The proposed GA–PARAFAC algorithm is sum-

marized as follows:

(1) Apply PARAFAC on X to obtain loading matrices

and define loading matrices (e.g. A, B, C, . . .)
with F significant factors as structure modes.

(2) Prescale the loading matrices A, B, C, . . . yielding
YA, YB, YC, . . . as the target matrices in Procrustes

analysis.

(3) Create a candidate subset Xs with randomly

chosen variables for each of the selection modes.

(4) Apply PARAFAC on Xs to obtain the correspond-

ing loading matrices (As, Bs, Cs, . . .) with F

factors.

(5) Prescale the loading matrices As, Bs, Cs, . . .
yielding YAs

, YBs
, YCs

, . . .
(6) Calculate Vconsensus according to Eqs. (2) and (3)

as the fitness of the candidate subset.

(7) Repeat steps 3–6 to construct a set of candidate

subsets as the initial population and incorporate

GA to search for the best subset.

3. Experimental

3.1. Data

3.1.1. Three-way bread sensory data

The three-way data set (10� 8� 11) was given by

Bro [19] as a case study for comparing unfolding PCA

and PARAFAC. Ten bread samples were assessed by

eight judges, each scoring 11 attributes: bread odor,

yeast odor, off-flavor, color, moisture, tough, salt

taste, sweet taste, yeast taste, other taste and total.

The 10 samples are pairwise replicates. Bro [20]

concluded that PARAFAC performs better than

unfolding-PCA for both simplicity and interpretation

of the model.

3.1.2. Four-way GC data for food samples

A set of gas chromatographic (GC) data of reaction

product mixtures was obtained for investigation of the

Maillard reaction. This data set has been studied as

two-way data for several purposes [7,8,18]. The data

set comprises chromatograms with 199 detected peaks.

Each sample is the reaction product of one of six

sugars: fructose, glucose, lactose, maltose, rhamnose

Fig. 2. Loading plot for the mode of attributes using complete data. The 11 attributes are: (1) bread odor (Bread-od), (2) yeast odor (Yeast-od),

(3) off-flavor (Off-flav), (4) color, (5) moisture, (6) tough, (7) salt taste (Salt-t), (8) sweet taste (Sweet-t), (9) yeast taste (Yeast-t), (10) other taste

(Other-t) and (11) total.
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and xylose, and one of nine amino acids: alanine,

asparagine, glutamine, glycine, threonine, arginine,

cysteine, lysine and glutamate. The reaction was

carried out at two different pH levels (pH = 6.5 and

7.9). Here, a subset of the data with 81 samples is

rearranged into a four-way array (6 sugars� 9 amino

Fig. 3. Loading plot for the mode of samples for three-way bread sensory data using (a) all variables, (b) five attributes selected by GA-PARAFAC

with two structure modes (sample and judge), (c) five attributes selected by loadings, (d) five attributes by GA-PARAFACwith one structure mode

(sample), (e) five attributes and four judges selected by GA-PARAFAC and (f) five attributes and four judges selected by loadings.
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acids� 2 pH levels� 199 peaks). There are 27 sam-

ples missing, i.e. 27� 199 missing elements in the

four-way array.

3.2. Software

The data are analyzed using a program in MATLAB

(version 4.0). The m-files for PARAFAC were from

Bro and Andersson [17]. They can handle missing

data and a variety of constraints. Other programs were

developed by ourselves.

4. Results and discussion

4.1. Three-way bread sensory data

The three-way data are centered across the first

mode (the samples). Two PARAFAC factors are

sufficient for the centered data according to the

CORCONDIA criterion [10]. The loading plot of

mode 2 (Fig. 2) shows that the attributes ‘‘salt taste’’,

‘‘tough’’, ‘‘color’’ and ‘‘bread odor’’ are located more

or less in the same direction, indicating high correla-

tion between them. This is also the case for the

attributes ‘‘total’’ and ‘‘moisture’’, for ‘‘yeast odor’’

and ‘‘yeast taste’’ and for ‘‘off-flavor’’ and ‘‘other

taste’’. The attribute ‘‘sweet taste’’ is relatively differ-

ent from others. Therefore, the 11 attributes could be

grouped into five clusters according to their correla-

tion. Five attributes should be able to well represent

all 11 attributes since five is higher than the number of

significant factors.

The loading plot of the sample mode (Fig. 3a)

demonstrates that the 10 samples are grouped in five

pairs. This indicates that the PARAFAC model cor-

rectly identifies the five pairs of replicate samples. All

pairs of samples are located on a line except samples 1

and 2. Fig. 4a shows that the judges 1–7 give quite

similar assessments and that judge 8 is located rela-

tively far from the other panelists.

From the results in these loading plots, one

might expect to find a three-way subset by selecting

five attributes instead of all attributes, but still to

represent the same structure information in both

modes of samples and judges. Or one might want

the three-way subset to retain only the information

in the mode of samples. In practice, it is also

Fig. 3 (continued).
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desirable to reduce both attributes and number of

judges, but to keep the same information in the

sample mode.

Feature selection is systematically studied by both

GA–PARAFAC and the loading method. The

numerical results in Table 1 show that all the

Table 1

The results obtained with the two feature selection methods for the three-way bread sensory data with different combinations of feature selection

modes and structure modes

Method Selection

mode(s)

Structure

mode(s)

Vconsensus

(total)

VconA

(sample mode)

VconB

(judge mode)

Selected

attributes

Selected judges

GA-PARAFAC C A and B 97.95 98.84 97.06 3, 6, 7, 9, 10 not applicable

Loading C A and B 93.99 97.71 90.27 2, 6, 7, 9, 10 not applicable

GA-PARAFAC C A 99.31 99.31 not applicable 2, 6, 8, 9, 10 not applicable

Loading C A 97.71 97.71 not applicable 2, 6, 7, 9, 10 not applicable

GA-PARAFAC B and C A 99.29 99.29 not applicable 4, 5, 7, 9, 10 2, 4, 6, 7

Loading B and C A 90.45 90.45 not applicable 2, 6, 7, 9, 10 2, 4, 7, 8

Fig. 4. Loading plot for the mode of judges for three-way bread sensory data using (a) all variables, (b) five attributes selected by GA-

PARAFAC with two structure modes (sample and judge) and (c) five attributes selected by loadings.
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selected subsets in general have high total consensus

values. They all retain more than 90% of the

structural information in the complete three-way

data. Among the five selected attributes in all sub-

sets, two attributes ((9) yeast taste and (10) other

taste) are always selected. For all the three situations,

GA–PARAFAC always retains more structural infor-

mation than the loading method, as expected. But

one should always examine loading plots in order to

avoid bias.

For the situation with one feature selection mode

and two structure modes, the five attributes selected

by GA–PARAFAC retain 98.8% information in the

sample mode and 97.1% information in the judge

mode, resulting in 98.0% total structural information

of the complete three-way data. The sample struc-

ture in Fig. 3b is indeed quite similar to that in Fig.

3a, and the clustering pattern of judges in Fig. 4b is

also like that obtained from the complete data in

Fig. 4a. Figs. 3c and 4c are the loading plots of the

sample and judge modes of the subset selected by

the loading method. Fig. 3c matches Fig. 3a well

with a consensus value of 97.7. There is no

apparent difference between Fig. 3c and b and their

consensus values are very close (97.7 and 98.8).

The judges pattern in Fig. 4c differs from that in

Fig. 4a, with the consensus value dropping from

97.1 to 90.3 compared to Fig. 4b.

For the second situation with one feature selection

mode and one structure mode, GA–PARAFAC leads

to a subset of attributes ((2) yeast odor, (6) tough, (8)

sweet taste, (9) yeast taste and (10) other taste) with

the highest consensus value (99.3). Fig. 3d shows that

the 10 samples are distributed similarly as in Fig. 3a,

except that the distance between the paired samples 3

and 4 becomes larger. The loading method gives the

same subset ((2) yeast odor, (6) tough, (7) salt taste,

(9) yeast taste and (10) other taste) as in the first

situation (the second row in Table 1), since the

selected attributes only depend on the selection mode

and are independent on the structure mode.

For the third situation with two feature selection

modes and one structure mode, the subset obtained

from GA–PARAFAC explained 99.3% information of

the complete data by using five selected attributes and

four selected judges. The retained information is about

9% higher than that obtained by the loading method,

which gives the lowest consensus value (90.5). The

loading plots in Fig. 3e–f shows that they both are

generally consistent with Fig. 3a, but the replicated

samples 1 and 2 lie more closely to the line of the other

samples in Fig. 3f than in the other plots (Fig. 3a–e).

Fig. 5. Loading plot for the pH mode for four-way GC data using all variables.
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4.2. Four-way GC data for food samples

Since the samples are arranged into more than one

mode and all samples have been preprocessed by

baseline subtraction, the four-way data are not cen-

tered. For this data set, the aim is to select about 10% of

the GC peaks that represent the same information about

sugars and amino acids in the complete data. Two

factors are detected as significant by the CORCONDIA

criterion [10] in the four-waymodel of PARAFAC. Fig.

5 shows that the first component mainly explains the

difference between the two pH levels.

In Fig. 6a, the six sugars are observed in four

clusters. Rhamnose is clearly separated from other

sugars on the upper right; maltose and lactose are

clustered on the left; fructose and glucose locate in

the middle and xylose in the lowest part along factor 2.

Quite similar clusters are found in Fig. 6b from a subset

of 20 peaks selected by GA–PARAFAC. The similar-

ity amounts to 99.7% (Table 2), and the four clusters in

Fig. 6b are separated even more clearly than in Fig. 6a.

Such cluster separation appears less obvious in Fig. 6c,

which retains 96.6% information in Fig. 6a. This

indicates that the loading method catches less structural

information than GA–PARAFAC.

Fig. 7a shows the behavior of the nine amino acids

in five groups in the model of the complete data. Along

factor 1, a group of lysine, glutamate and arginine

clearly separates from the others on the right. Along

factor 2, alanine and asparagine are clustered on the

Fig. 6. Loading plot for the mode of sugars for four-way GC data using (a) all variables, (b) 20 peaks selected by GA-PARAFAC and (c) 20

peaks selected by loadings.
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top, and glutamine and threonine next. Glycine is

located between cysteine (which stays on the bottom

of factor 2) and the cluster of glutamine and threonine.

A similar and even more clear clustering pattern is

observed in Fig. 7b, implying that GA–PARAFAC

performs well. The subset of peaks preserves 99.9%

information by choosing only 20 instead of all 199. The

result of the loading method (Fig. 7c) shows a different

distribution of the amino acids in Fig. 7c from that in

Fig. 7a, and their similarity is only 65.3%. The loading

method fails to catch the structural information in the

amino acid mode. The comparison results in Table 2

Fig. 7. Loading plot for the mode of amino acids for four-way GC data using (a) all variables, (b) 20 peaks selected by GA-PARAFAC and (c)

20 peaks selected by loadings.

Table 2

The consensus values and selected variables for the two feature selection methods of the four-way GC data

Method Vconsensus

(total)

VconA

(sugar mode)

VconB
(amino

acid mode)

20 selected peaks

GA-PARAFAC 99.83 99.72 99.94 12, 32, 35, 47, 57, 58, 63, 71, 79, 88, 90, 103,

112, 117, 118 , 128, 143, 149, 151, 153

Loading 80.96 96.59 65.32 18, 25, 29, 31, 32, 33, 43, 47, 60, 103, 112,

117, 118, 137, 141, 142, 145, 148, 151, 152

The bold numbers indicate peaks common for both methods.
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show that GA–PARAFAC retains 99.8% total struc-

tural information, which is about 19% higher than the

loading method. The two subsets of variables selected

by the two methods (Table 2) vary a lot, and there are

only seven peaks in common.

5. Conclusion

A new method is proposed to select features with

high-dimensional N-way data. The performance of the

method was studied on a three-way sensory data set

and a four-way food chemistry (FC) data set. The

results show that the proposed method leads to a

better N-way subset than the loading method. For

the sensory data, a three-way subset with five attrib-

utes and four judges preserves more than 99% general

features presented in the three-way data with all 11

attributes and eight judges. For the GC data, 20

selected peaks account for up to 99.8% consensus of

the complete data with 199 original peaks. Similar to

the feature selection methods in two-way PCA [7], the

proposed method uses the full model from the com-

plete data as target. When the full model is not

reasonable because of the large amount of irrelevant

information, one needs to spend extra efforts to

explore data to find a reasonable model and uses it

to replace the full model in the method. For two-way

data, the sequential projection pursuit [8] can be used

to find a reasonable model. But for N-way data, it is

still under investigation. Like most feature selection

methods in two-way analysis, the number of selected

variables should be predefined. The proposed method

cannot be applied if one wants to reduce the number

of variables lower than the number of factors. This

feature selection methodology can also find applica-

tions in other multi-way methods such as N-way PLS.

Acknowledgements

The authors thank the EU for the financial

assistance on the N-way methods project.

References

[1] B.G.M. Vandeginste, D.L. Massart, L.C.M. Buydens, S.

de Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemo-

metrics and Qualimetrics: Part B, Elsevier, Amsterdam, 1998.

[2] R. Bro, PARAFAC. Tutorial and applications, Chemometrics

and Intelligent Laboratory Systems 38 (1997) 149–171.

[3] R. Bro, Multiway calibration. Multilinear PLS, Journal of

Chemometrics 10 (1996) 47–61.

[4] R. Bro, J.J. Workman, P.R. Mobley, B.R. Kowalski, Review

of chemometrics applied to spectroscopy: 1985–95, Part 3—

multi-way analysis, Applied Spectroscopy Reviews 32 (1997)

237–261.

[5] A.W. Czarnik, Combinatorial chemistry, Analytical Chemistry

70 (1998) 378A–386A.

[6] P. Geladi, Analysis of multi-way (multi-mode) data, Chemo-

metrics and Intelligent Laboratory Systems 7 (1989) 11–30.

[7] Q. Guo, W. Wu, D.L. Massart, C. Boucon, S. de Jong, Feature

selection in principal component analysis of analytical data,

Chemometrics and Intelligent Laboratory Systems 61 (2002)

123–132.

[8] Q. Guo, W. Wu, F. Questier, D.L. Massart, C. Boucon, S. de

Jong, Sequential projection pursuit using genetic algorithms

for data mining of analytical data, Analytical Chemistry 72

(2000) 2846–2855.

[9] D.J. Louwerse, H.A.L. Kiers, A.K. Smilde, Cross-validation

of multi-way component models, Journal of Chemometrics 13

(1999) 491–510.

[10] R. Bro, H.A.L. Kiers, A new efficient method for determining

the number of components in PARAFAC models, Journal of

Chemometrics (in press).

[11] W.J. Krzanowski, Selection of variables to preserve multivari-

ate data structure, using principal components, Applied Statis-

tics 36 (1987) 22–33.

[12] J.C. Gower, Generalised Procrustes analysis, Psychometrika

40 (1975) 33–51.

[13] R. Leardi, R. Boggia, M. Terrile, Genetic algorithms as a

strategy for feature selection, Journal of Chemometrics 6

(1992) 267–281.

[14] R. Leardi, Application of genetic algorithms to feature selec-

tion under full validation conditions and to outlier detection,

Journal of Chemometrics 8 (1994) 65–79.

[15] D.E. Goldberg, Genetic Algorithms in Search, Optimisation

and Machine Learning, Addison-Wesley Publishing, Reading,

MA, 1989.

[16] C.B. Lucasius, G. Kateman, Understanding and using genetic

algorithms: Part 1. Concepts, properties and context, Chemo-

metrics and Intelligent Laboratory Systems 19 (1993) 1–33.

[17] Available at: http://www.models.kvl.dk/research/source.

[18] Q. Guo, W. Wu, D.L. Massart, C. Boucon, S. de Jong, Feature

selection in sequential projection pursuit, Analytica Chimica

Acta 446 (2001) 85–96.

[19] Available at: http://www.models.kvl.dk/research/data.

[20] R. Bro, Multi-way analysis in the food industry. Models, al-

gorithms, and applications, PhD thesis, University of Amster-

dam (NL) and Royal Veterinary and Agricultural University

(DK), 1998, pp. 196–203.

[21] W. Wu, Q. Guo, S. de Jong, D.L. Massart, Randomisation test

for the number of dimensions of the group average space in

generalised Procrustes analysis, Food Quality and Preference

13 (2002) 191–200.

[22] W. Wu, Validation of consensus between proteomic/genomic

W. Wu et al. / Chemometrics and Intelligent Laboratory Systems 65 (2003) 83–9594

 http:\\www.models.kvl.dk\research\source 
 http:\\www.models.kvl.dk\research\data 


expression and clinical chemical data by a new randomisation

F-test in generalised Procrustes analysis, Oral Presentation at

the Eighth Chemometrics in Analytical Chemistry Confer-

ence, 9/22–26/2002, Seattle, USA.

[23] D. Gonzalez-Arjona, G. Lopez-Perez, A.G. Gonzalez,

Holmes, a program for performing Procrustes transforma-

tions, Chemometrics and Intelligent Laboratory Systems 57

(2001) 133–137.

[24] D. Gonzalez-Arjona, G. Lopez-Perez, A.G. Gonzalez, Per-

forming Procrustes discriminant analysis with HOLMES, Ta-

lanta 49 (1999) 189–197.

[25] C.E. Anderson, J.H. Kalivas, Fundamentals of calibration

transfer through Procrustes analysis, Applied Spectroscopy

53 (1999) 1268–1276.

[26] J.R. King, D.A. Jackson, Variable selection in large environ-

mental data sets using principal components analysis, Envi-

ronmetrics 10 (1999) 67–77.

[27] G. Scarponi, I. Moret, G. Capodaglio, M. Romanazzi,

Cross-validation, influential observations and selection of

variables in chemometric studies of wines by principal

component analysis, Journal of Chemometrics 4 (1990)

217–240.

[28] L. Scarminio, M. Kubista, Analysis of correlated spectral data,

Analytical Chemistry 65 (1993) 409–416.

[29] M. Kubista, A new method for the analysis of correlated data

using Procrustes rotation which is suitable for spectral analy-

sis, Chemometrics and Intelligent Laboratory Systems 7

(1990) 273–279.

[30] C. Bessant, R.G. Brereton, S. Dunkerley, Integrated process-

ing of triply coupled diode array liquid chromatography elec-

trospray mass spectrometric signals by chemometric methods,

Analyst 124 (1999) 1733–1744.

[31] C. Demir, P. Hindmarch, R.G. Brereton, Procrustes analysis

for the determination of number of significant masses in gas

chromatography mass spectrometry, Analyst 121 (1996)

1443–1449.

[32] R.G. Brereton, D.V. McCalley, Procrustes analysis for the

comparison of test methods in reversed-phase high perform-

ance liquid chromatography of basic compounds, Analyst 124

(1999) 227–238.

W. Wu et al. / Chemometrics and Intelligent Laboratory Systems 65 (2003) 83–95 95


	Introduction
	Theory
	Notation and nomenclature
	PARAFAC
	Feature selection method based on loadings
	Feature selection using Procrustes analysis and genetic algorithm

	Experimental
	Data
	Three-way bread sensory data
	Four-way GC data for food samples

	Software

	Results and discussion
	Three-way bread sensory data
	Four-way GC data for food samples

	Conclusion
	Acknowledgements
	References

