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A new method, alternating penalty trilinear decomposition (APTLD), is developed for the decom-

position of three-way data arrays. By utilizing the alternating least squares principle and alternating

penalty constraints to minimize three different alternating penalty errors simultaneously, the

intrinsic profiles are found. The APTLD algorithm can avoid the two-factor degeneracy problem

and relieve the slow convergence problem, which is difficult to handle for the traditional parallel

factor analysis (PARAFAC) algorithm. It retains the second-order advantage of quantification for

analytes of interest even in the presence of potentially unknown interferents. In additions, it is

insensitive to the estimated component number, thus avoiding the difficulty of determining a correct

component number for the model, which is intrinsic in the PARAFAC algorithm. The results of

treating one simulated and one real excitation–emission spectral data set showed that the proposed

algorithm performs well as long as the model dimensionality chosen is not less than the actual

number of components. Furthermore, the performance of the APTLD algorithm sometimes surpasses

that of the PARAFAC algorithm in the prediction of concentration profiles even if the component

number chosen is the same as the actual number of underlying factors in real samples. Copyright #

2005 John Wiley & Sons, Ltd.
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calibration

1. INTRODUCTION

Determination of the components of interest in complex

mixtures is a challenging problem in analytical chemistry.

The common practice to tackle the problem is to resort to

some physical and chemical separation techniques. Accord-

ingly, this solution is always time-consuming and cost-

expensive. Moreover, the equilibrium may be broken by

the separation procedure when there exists a chemical

equilibrium in the mixtures, which will mislead quantifica-

tion of the analytical components of interest. However, with

the development of modern high-order analytical instru-

ments and data collection techniques as well as the applica-

tion of chemometric methods dealing with three-way data

sets, the problem may be solved. Furthermore, three-way

data analysis has become an active domain in chemometrics

research [1–7]. It has become ever more significant to de-

velop available methods which may be applied to these

three-way data [1,3,7,8]. The attractive merit derived from

three-way data arrays lies in the fact that the analysis of

several components of interest can be quantified even in the

presence of unknown interferents, commonly called the

‘second -order advantage’ [3,9].

There are two types of algorithm for the decomposition of

three-way data arrays. One type is based on generalized

eigenanalysis to resolve the data arrays, with the well-

known examples of the generalized rank annihilation

method (GRAM) [10–12] and the direct trilinear decomposi-

tion (DTLD) method [13–15]. Unfortunately, GRAM is

constrained to use only one standard and one mixture

sample at a time. Although DTLD allows for a direct solution

through multiple samples, it requires the construction of two

pseudo-samples, which unavoidably causes a loss of infor-

mation in multiple samples. Furthermore, these approaches

may occasionally yield imaginary solutions and exhibit

inflated variance. The other type of algorithm is an iterative
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one [7,16–25], represented by the parallel factor analysis

(PARAFAC) algorithm proposed by Harshman [26].

Although this method provides a best fit to the three-way

data array and has been successfully utilized to solve many

chemical problems, it will give chemically meaningless

solutions when trapped in computational swamps. In addi-

tion, the solutions finally obtained using this method are

rather unstable unless the chosen component number equals

the actual one, which leads to a dilemma that is hard to

handle in practical problem solving. Moreover, this method

suffers from annoyingly slow convergence, thus always

requiring a long time to resolve the data array. However,

following alternating trilinear decomposition (ATLD) [18],

some algorithms [27–29] which can avoid the above rela-

tively strict constraint have tried to solve this problem.

Faber et al. [30] compared several recently proposed algo-

rithms, including alternating least squares (ALS) [31], DTLD

[13], ATLD [18], self-weighted alternating trilinear decom-

position (SWATLD) [27], pseudo alternating least squares

(PALS) [28], alternating coupled vector resolution

(ACOVER) [29], alternating slice-wise diagonalization

(ASD) [32] and alternating coupled matrix resolution (ACO-

MAR) [33]. It was found that the ALS estimated models are

generally of a better quality than any of the alternatives even

when overfactoring the model, but ALS is significantly

slower. However, it must be pointed out that, according to

References [30,34], the SWATLD algorithm has the advan-

tages of fast convergence and insensitivity to excess factors

used in calculations, and offers better results than other

second-order algorithms (including ALS). (The routine

used for applying SWATLD was generously supplied by

N. M. Faber.) These results suggest that related works on

three-way data analysis and second-order calibration are

worthy of further study.

In this paper a new algorithm with some improved

properties, alternating penalty trilinear decomposition

(APTLD), is developed for the trilinear analysis of three-

way data arrays. Unlike existing methods, the algorithm

aims at using alternately the constraint functions as penalty

terms of the PARAFAC error, which minimizes three new

least squares-based objective functions. A virtue of the

method compared with GRAM is that it provides a statisti-

cally plausible manner to make use of multi-sample infor-

mation. Another salient advantage of APTLD is that the

resolved profiles are very stable with respect to the model

dimensionality when the chosen dimensionality is not less

than the actual number of components, thus avoiding the

dilemma in selecting a proper component number for the

model. In addition, the proposed APTLD criterion provides

a natural way to avoid the problem of so-called two-factor

degeneracy [21,35,36]. Moreover, the proposed algorithm

can overcome the slow convergence brought about by ran-

dom initialization or high multicollinearity to some extent. In

other words, the APTLD algorithm has a much higher

convergence rate compared with the traditional PARAFAC

algorithm [37–38]. The results of treating one simulated and

one real excitation–emission spectral data set showed that

the proposed algorithm performs well. Furthermore, the

performance of APTLD sometimes surpasses that of PAR-

AFAC in the prediction of concentration profiles even if the

component number chosen is the same as the actual number

of underlying factors in real samples.

2. NOMENCLATURE

Throughout this paper, scalars are represented by lowercase

italics, bold lowercase characters denote vectors, bold capi-

tals designate two-way matrices, underlined bold capitals

symbolize three-way arrays, and superscript T denotes the

transpose of a matrix. Before reading the following sections

of the paper, readers are recommended to refer to the

nomenclature below for detailed information:

� X—three-way data array;

� I; J; K—the dimensions of the three modes of X;

� AI�N ; BJ�N ;CK�N —the three underlying loading matrices

of X with dimensions I �N; J �N; and K �N respec-

tively (which will be simply represented by A; B and C

respectively in this paper);

� xijk—the ijkth element of X;

� ain; bjn; ckn—the inth, jnth and knth elements of the three

underlying loading matrices A; B and C respectively;

� aðiÞ; bðjÞ; cðkÞ—the ith, jth and kth rows of profile matrices

A; B and C respectively;

� diagðaðiÞÞ; diagðbðjÞÞ;diagðcðkÞÞ—diagonal matrices with

elements aðiÞ; bðjÞ and cðkÞ respectively;

� Xi::;X:j:;X::k—the ith horizontal, jth lateral and kth frontal

slices of X respectively;

� Ei::;E:j:;E::k—the ith horizontal, jth lateral and kth frontal

slices of the three-way residue array E respectively;

� eijk—the ijkth element of the three-way residue array E;

� Aþ;Bþ;Cþ—the Moore–Penrose generalized inverses of

matrices A;B and C respectively;

� k�kF—the Frobenius matrix norm.

3. THEORY

3.1. Trilinear model for second-order
calibration
In second-order calibration the famous trilinear model pro-

posed by Harshman [26] and Carroll and Chang [39] has

been widely accepted owing to its consistency with Beer’s

law in chemistry. According to the trilinear model, which is

depicted in Figure 1, each element xijk of the data array X can

be represented as

xijk ¼
XN
n¼1

ainbjnckn þ eijk

ði ¼ 1; 2; . . . ; I; j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . ;KÞ
ð1Þ

The trilinear model can be expressed in matrix form as

Xi:: ¼ BdiagðaðiÞÞCT þ Ei:: ði ¼ 1; 2; . . . ; IÞ ð2Þ

X:j: ¼ CdiagðbðjÞÞAT þ E:j: ð j ¼ 1; 2; . . . ; JÞ ð3Þ

X::k ¼ AdiagðcðkÞÞBT þ E::k ðk ¼ 1; 2; . . . ;KÞ ð4Þ

Regardless of scaling and permutation, the decomposition

of the trilinear model proposed above will be unique and have

no free rotations provided that k1 þ k2 þ k352N þ 2 [36],
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where k1; k2 and k3 are the k-ranks of A; B and C respec-

tively. In other words, loading matrices A; B and C will be

resolved in a unique way.

3.2. Least squares-based penalty term
and alternating penalty (AP) error
From Equations (2)–(4) one can obtain the residue functions

EIðA;B;CÞ ¼
XI
i¼1

Xi:: � BdiagðaðiÞÞCT
�� ��2

F
ð5Þ

EJðA;B;CÞ ¼
XJ
j¼1

X:j: � CdiagðbðjÞÞAT
�� ��2

F
ð6Þ

EKðA;B;CÞ ¼
XK
k¼1

X::k � AdiagðcðkÞÞBT
�� ��2

F
ð7Þ

According to the least squares principle, for a trilinear

model Xi:: ¼ BdiagðaðiÞÞCT þ Ei:: ði ¼ 1; 2; . . . ; IÞ the following

equations hold:

BþXi:: ¼ diagðaðiÞÞCT and Xi::ðCTÞþ

¼ BdiagðaðiÞÞ ði ¼ 1; 2; . . . ; IÞ
ð8Þ

CþX:j: ¼ diagðbðjÞÞAT and X:j:ðATÞþ

¼ CdiagðbðjÞÞ ðj ¼ 1; 2; . . . ; JÞ
ð9Þ

AþX::k ¼ diagðcðkÞÞBT and X::kðBTÞþ

¼ AdiagðcðkÞÞ ðk ¼ 1; 2; . . . ;KÞ
ð10Þ

Moreover, making use of the above equations alternately

as the constraint terms and combining them with residue

functions (5)–(7), one can obtain the following three con-

strainted problems:

problem 1: min EIðA;B;CÞ s:t:

XK
k¼1

diagðsqrtð1:=diagmðCTCÞÞÞðAþX::k � diagðcðkÞÞBTÞ
�� ��2

F
¼ 0

XI
i¼1

ðXi::ðCTÞþ � BdiagðaðiÞÞÞdiagðsqrtð1:=diagmðATAÞÞÞ
�� ��2

F
¼ 0

ð11Þ

problem 2: min EJðA;B;CÞ s:t:

XI
i¼1

diagðsqrtð1:=diagmðATAÞÞÞðBþXi:: � diagðaðiÞÞCTÞ
�� ��2

F
¼ 0

XJ
j¼1

ðX:j:ðATÞþ � CdiagðbðjÞÞÞdiagðsqrtð1:=diagmðBTBÞÞÞ
�� ��2

F
¼ 0

ð12Þ

problem 3: min EKðA;B;CÞ s:t:

XJ
j¼1

diagðsqrtð1:=diagmðBTBÞÞÞðCþX:j: � diagðbðjÞÞATÞ
�� ��2

F
¼ 0

XK
k¼1

X::k BT
� �þ�Adiag c kð Þ

� �� �
diag sqrt 1:=diagm CTC

� �� �� ���� ���2

F
¼ 0

ð13Þ

where s.t. stands for ‘subject to’ (constraint conditions), min

denotes ‘minimize’, ./ denotes array division (e.g. suppose

x ¼ ðxiÞ and y ¼ ðyiÞ, then x:=y ¼ ðxi=yiÞÞ; sqrt is the square

root operator and 1 is a vector of length N with all elements

equal to one; diagm denotes column vector with elements

equal to diagonal elements of a square matrix.

Aimed at transforming the above constrained problems

into non-constrained ones, the APTLD method utilizes the

corresponding constraint functions as penalty terms and

combines these with residue functions (5)–(7) to construct

three objective functions. Then it decomposes the model by

alternately minimizing the following three objective func-

tions (AP error):

S Bð Þ ¼
XI
i¼1

Xi:: � Bdiag a ið Þ
� �

CT
�� ��2

F

þ r

 XK
k¼1

diag sqrt 1:=diagm CTC
� �� �� �

AþX::k � diag c kð Þ
� �

BT
� ��� ��2

F

þ
XI
i¼1

Xi:: CT
� �þ�Bdiag a ið Þ

� �� �
diag sqrt 1:=diagm ATA

� �� �� ���� ���2

F

!

ð14Þ

S Cð Þ ¼
XJ
j¼1

X:j: � Cdiag b jð Þ
� �

AT
�� ��2

F

þ p

 XI
i¼1

diag sqrt 1:=diagm ATA
� �� �� �

BþXi:: � diag a ið Þ
� �

CT
� ��� ��2

F

þ
XJ
j¼1

X:j: AT
� �þ�Cdiag b jð Þ

� �� �
diag sqrt 1:=diagm BTB

� �� �� ���� ���2

F

!

ð15Þ

S Að Þ ¼
XK
k¼1

X::k � Adiag c kð Þ
� �

BT
�� ��2

F

þ q

 XJ
j¼1

diag sqrt 1:=diagm BTB
� �� �� �

CþX:j: � diag b jð Þ
� �

AT
� ��� ��2

F

þ
XK
k¼1

X::k BT
� �þ�Adiag c kð Þ

� �� �
diag sqrt 1:=diagm CTC

� �� �� ���� ���2

F

!

ð16Þ
where r, p and q are penalty factors.

3.3. APTLD algorithm
According to the above objective functions, an alternating

penalty algorithm is used to exploit the solution. This

Figure 1. Graphical representation of trilinear model of

three-way data array X: A, relative first loading matrix of

size I�N; B, relative second loading matrix of size J�N; C,

relative concentration matrix of size K�N; G, three-way

diagonal core array of size N�N�N with ones on the

superdiagonal and zeros elsewhere; E, three-way residual

data array of size I� J�K. Note that I is the number of

occasions (excitation wavelengths), J is the number of vari-

ables (emission wavelengths), K is the number of samples,

including standards and unknowns, and N is the estimated

number of factors.
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minimizes the three objective functions in an alternating

manner, i.e. it minimizes the APTLD error Equation (14)

over B for fixed C and A, Equation (15) over C for fixed A

and B and Equation (16) over A for fixed B and C. Details of

the procedure are described below.

If B minimizes S(B) (Equation (14)) for fixed C and A, it is

necessary for B to satisfy the condition

@SðBÞ
@B

¼
XI
i¼1

"
� 2Xi::Cdiag a ið Þ

� �
þ 2Bdiag a ið Þ

� �
CTCdiag a ið Þ

� �
� 2rXi:: CT

� �þ
diag 1:=diagm ATA

� �� �
diag a ið Þ

� �
þ 2rBdiag 1:=diagm ATA

� �� �
diagðaðiÞÞÞ2

#

þ
XK
k¼1

�
� 2rXT

::k Aþð ÞT
diag 1:=diagm CTC

� �� �
diag c kð Þ

� �

þ 2rBdiag 1:=diagm CTC
� �� �

diag c kð Þ
� �� �2

�
¼ 0 ð17Þ

For fixed A and B the reasonable C should satisfy

@S Cð Þ
@C

¼
XJ
j¼1

"
� 2X:j:Adiag b jð Þ

� �
þ 2Cdiag b jð Þ

� �
ATAdiag b jð Þ

� �
� 2pX:j: AT

� �þ
diag 1:=diagm BTB

� �� �
diag b jð Þ

� �
þ 2pCdiag 1:=diagm BTB

� �� �
diag b jð Þ

� �� �2�

þ
XI
i¼1

"
� 2pXT

i:: Bþð ÞT
diag 1:=diagm ATA

� �� �
diagða ið ÞÞ

þ 2pCdiag 1:=diagm ATA
� �� �

diag a ið Þ
� �� �2

�
¼ 0 ð18Þ

For fixed B and C the reasonable A should satisfy

@S Að Þ
@A

¼
XK
k¼1

�
� 2X::kBdiagðcðkÞÞ þ 2AdiagðcðkÞÞBTBdiag c kð Þ

� �
� 2qX::k BT

� �þ
diag 1:=diagm CTC

� �� �
diag c kð Þ

� �
þ 2qAdiag 1:=diagm CTC

� �� �
diag c kð Þ

� �� �2
�

þ
XJ
j¼1

�
� 2qXT

:j: Cþð ÞT
diag 1:=diagm BTB

� �� �
diag b jð Þ

� �

þ 2qAdiag 1:=diagm BTB
� �� �

diag b jð Þ
� �� �2

�
¼ 0 ð19Þ

Thus one can obtain the update of B for fixed C and A from

Equation (17) as

B ¼
 XI

i¼1

Xi:: C þ rðCTÞþdiagð1:=diagmðATAÞÞ
� �

diagðaðiÞÞ

þ r
XK
k¼1

XT
::kðAþÞTdiagð1:=diagmðCTCÞÞdiagðcðkÞÞ

�
 XI

i¼1

diagðaðiÞÞ CTC þ r diagð1:=diagmðATAÞÞ
� �

diagðaðiÞÞ

þ r
XK
k¼1

diagð1:=diagmðCTCÞÞ diagðcðkÞÞ
� �2

�þ
ð20Þ

From Equation (18), the update of C for fixed A and B is

C ¼
 XJ

j¼1

X:j: A þ pðATÞþdiagð1:=diagmðBTBÞÞ
� �

diagðbðjÞÞ

þ p
XI
i¼1

XT
i::ðBþÞTdiagð1:=diagmðATAÞÞdiagðaðiÞÞ

!
 XJ

j¼1

diagðbðjÞÞ ATA þ pdiagð1:=diagmðBTBÞÞ
� �

diagðbðjÞÞ

þ p
XI
i¼1

diagð1:=diagmðATAÞÞ ðdiagðaðiÞÞÞ2

�þ
ð21Þ

From Equation (19) the update of A for fixed C and B is

A ¼
 XK

k¼1

X::k B þ qðBTÞþdiagð1:=diagmðCTCÞÞ
� �

diagðcðkÞÞ

þ q
XJ
j¼1

XT
:j:ðCþÞTdiagð1:=diagmðBTBÞÞdiagðbðjÞÞ

�
 XK

k¼1

diagðcðkÞÞ BTB þ q diagð1:=diagmðCTCÞÞ
� �

diagðcðkÞÞ

þ q
XJ
j¼1

diagð1:=diagmðBTBÞÞ ðdiagðbðjÞÞÞ2

�þ
ð22Þ

In addition, when p¼ q¼ r¼ 0, Equations (20)–(22) will

reduce to

B ¼
XI
i¼1

Xi::CdiagðaðiÞÞ
 ! XI

i¼1

diagðaðiÞÞCTCdiagðaðiÞÞ
 !þ

ð23Þ

C ¼
XJ
j¼1

X:j:AdiagðbðjÞÞ

0
@

1
A XJ

j¼1

diagðbðjÞÞATAdiagðbðjÞÞ

0
@

1
A

þ

ð24Þ

A ¼
XK
k¼1

X::kBdiagðcðkÞÞ
 ! XK

k¼1

diagðcðkÞÞBTBdiagðcðkÞÞ
 !þ

ð25Þ

Obviously these formulae can be considered as a variant of

the traditional PARAFAC algorithm.

Having derived the updating equations for these para-

meter matrices, we can present the general algorithm for the

APTLD method as follows.

1. Randomly initialize A and B and choose an appropriate

penalty factor p, q, r.

2. Compute C using Equation (21).

3. Compute A using Equation (22).

4. Compute B using Equation (20).

5. Scale A to be columnwise normalized.

6. Scale B to be columnwise normalized.

7. Compute C using Equation (21).

8. Repeat steps 3–7 until a stopping criterion is satisfied.

4. EXPERIMENTAL

To investigate the performance of the proposed method, we

employ two experiments as examples. One experiment is a

computer simulation and the other is a chemical analysis for
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fluoroquinolones. The data analysis and simulation were

carried out in the Matlab environment.

4.1. Simulated excitation–emission matrix
fluorescence data
A data array was simulated which was produced by a

fluorescence spectrophotometer on seven samples of four

species. The excitation spectral profiles a1–a4 of the four

species were generated by

a1;i ¼ 0:8 � gsð2i� 1; 30; 30Þ þ 0:8 � gsð2i� 1; 60; 10Þ

a2;i ¼ 0:5 � gsð2i� 1; 20; 20Þ þ 0:3 � gsð2i� 1; 50; 30Þ

a3;i ¼ 0:8 � gsð2i� 1; 30; 15Þ þ 0:2 � gsð2i� 1; 60; 20Þ

a4;i ¼ 0:3 � gsð2i� 1; 55; 10Þ þ 0:5 � gsð2i� 1; 30; 25Þ

with i ¼ 1; 2; 3; . . . ; 50, where gs(x, a, b) refers to the value at x

of a Gaussian function with centre a and standard deviation

b, i.e. gsðx; a; bÞ ¼ exp½�ðx� aÞ2=2b2�. The emission spectral

profiles b1 � b4 of the four species were produced by

b1;j ¼ 0:6 � gsð4j� 3; 50; 10Þ þ 0:3 � gsð4j� 3; 60; 10Þ

b2;j ¼ 0:8 � gsð4j� 3; 30; 10Þ þ 0:4 � gsð4j� 3; 70; 25Þ

b3;j ¼ 0:7 � gsð4j� 3; 50; 20Þ þ 0:3 � gsð4j� 3; 60; 25Þ

b4;j ¼ 0:5 � gsð4j� 3; 40; 10Þ þ 0:4 � gsð4j� 3; 50; 25Þ

The first two with i ¼ 1; 2; 3; . . . ; 25 simulated samples con-

tained only species 1–3, while the remaining five samples

contained all four species. Their concentrations were uni-

formly distributed in the range 0–1. The three-way responses

were generated exactly according to Equation (1), in which

random errors were normally distributed with mean zero and

standard deviation 0.3%. The data array was treated employ-

ing not only the APTLD and traditional PARAFAC algorithms

but also the ATLD method to resolve the profiles of each

component in three modes. Furthermore, the APTLD and

ATLD algorithms as well as the traditional PARAFAC method

were performed on the simulated data for comparison.

4.2. Real excitation–emission matrix
fluorescence data
Ten samples containing different quantities of three

chemical species, ofloxacin (OFL), norfloxacin (NOR) and

enoxacin (ENO), were analysed by fluorescence spectropho-

tometry. The concentrations of each component are shown in

Table I. The first six samples are used as concentration

calibration samples and the last four are used as concentra-

tion prediction samples with ENO as interference species.

All response matrices were recorded using a Hitachi F-4500

fluorescence spectrophotometer with excitation and emis-

sion wavelengths ranging from 260 to 340 nm at intervals of

5 nm and from 378 to 501 nm at intervals of 3 nm respec-

tively. The slit width was 5/5 nm. The scan rate was

1200 nm min�1. The effect of Rayleigh scattering on all re-

sponse matrices was roughly reduced by subtracting the

response matrix of an average blank solution from all sample

response matrices. A 42� 17� 10 three-way data array was

thereby assembled. This data array was treated using the

APTLD and the PARAFAC algorithms as well as the ATLD

algorithm to recover the spectral profiles of each component

and the OFL and NOR concentrations in the presence of

interference species ENO.

All computer programs were written in Matlab and all

calculations were carried out on a personal computer

Pentium IV processor with 128 MB RAM under the

Windows 2000 operating system.

5. RESULTS AND DISCUSSION

5.1. Choice of value of penalty factor p, q, r
The value of penalty factor p, q, r should be chosen before

implementation of the APTLD algorithm. The performance

of APTLD with regard to choice of penalty factor p, q, r was

scrutinized. Table II reveals that choosing very small p, q and

r (such as p¼ q¼ r¼ 10�3 or 0) will lead to a large number of

iterations and sensitivity to excess factors used in calcula-

tions for the final results of APTLD, which is similar to the

situation with the PARAFAC algorithm. In addition, high

variance of the quality of results has been observed with p, q,

r 4 1 and N¼ 5. On the other hand, different runs may

converge to different final results even if they have the same

residual sum of squares. Selecting larger p, q and r (e.g.

p¼ q¼ r¼ 104) will make APTLD insensitive to excess factors

and speed up convergence of the algorithm. A further

increase in p, q and r will make APTLD perform even better

according to the variance among different trials and compu-

tational burdens. However, no obvious variance of the

quality of results has been observed with p, q and r varying

from 104 to 1020. In addition, the results of a number of runs

indicate that the performance of APTLD is hardly improved

when p, q, r5 104. In this paper we choose p¼ q¼ r¼ 1020.

5.2. Implementation of APTLD, ATLD
and PARAFAC
For all three-way data arrays, random initialization was

implemented to start the iterative optimization procedures

of APTLD and ATLD as well as PARAFAC. The optimiza-

tion procedures of APTLD, ATLD and PARAFAC are termi-

nated when the following criterion reaches a certain

threshold "("¼ 10�6 in this paper):

SSRðmÞ � SSRðm�1Þ

SSRðm�1Þ

					
					 < " ð25Þ

Table I. Real concentrations (mgml�1) of samples 1–10

Species 1 2 3 4 5 6 7 8 9 10

OFL 0.0400 0.0000 0.0120 0.0240 0.0360 0.0480 0.0160 0.0200 0.0280 0.0400
NOR 0.0000 0.0160 0.0160 0.0120 0.0160 0.0200 0.0120 0.0200 0.0160 0.0200
ENO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0800 0.0800 0.0800 0.0800
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where SSRðmÞ ¼
PK

k¼1 kX::k � AðmÞdiagðcðkÞÞðmÞðBTÞðmÞk2
F, SSR

is the residual sum of squares and m is the current iteration

number. A maximal number of 3000 iterations was chosen to

avoid unduly slow convergence.

5.3 Simulated excitation–emission
matrix fluorescence data
First of all, for the proposed APTLD with p¼ q¼ r¼ 1020 the

number of components is chosen to be four, which is the true

dimensionality of the underlying model. The resolved ex-

citation spectra, emission spectra and concentration profiles

are plotted together with the actual profiles in Figures 2(A1)–

2(C1) respectively. For comparison the PARAFAC and

ATLD algorithms were also performed with the same com-

ponent number. Figures 2(A2)–2(C2) for PARAFAC and

Figures 2(A3)–2(C3) for ATLD display the estimated profiles

together with the actual profiles in the three respective

modes. These results indicate that the APTLD method

performed well as well as the PARAFAC algorithm in the

case where the model dimensionality was correctly chosen.

However, the performance of the ATLD method was not

satisfactory in resolving the concentration profile. Secondly,

the simulated data were analysed with five components in

order to illustrate the insensitivity to the chosen component

number and the resolution accuracy of the proposed

method. The resolved profiles together with the actual

profiles in the three respective modes are showed in

Figures 3(A1)–3(C1) for APTLD, Figures 3(A2)–3(C2) for

PARAFAC and Figures 3(A3)–3(C3) for ATLD. These results

reveal that the APTLD algorithm works well but the PAR-

AFAC algorithm is difficult to obtain satisfactory results.

Moreover, the performance of the APTLD method in resol-

ving the concentration profile is better than that of ATLD. To

elucidate further the insensitivity to the chosen component

number, recoveries of concentration profiles for four species

of an arbitrarily chosen one of seven simulated samples and

iterations of APTLD were investigated. The results in Table

III reveal that the APTLD method performed well when the

number of components was increased from the actual di-

mensionality to larger values. Therefore one need not deter-

mine the component number accurately in the APTLD

method as long as the component number is chosen greater

than the possible model dimensionality. Furthermore, the

convergence rate of APTLD is much faster than that of

PARAFAC but slower than that of ATLD when the compo-

nent number chosen is the same as the actual number of

factors. The results of 10 random runs showed that the mean

iteration number for APTLD (IT¼ 40) was much less than

that for PARAFAC (IT¼ 1235) but greater than that for

ATLD (IT¼ 9).

5.4. Real excitation–emission matrix
fluorescence data
To resolve the actual profiles of the components, the data

array of 10 mixture samples was analysed using the APTLD

and PARAFAC algorithms as well as the ATLD method. The

first six samples are used as concentration calibration sam-

ples and the last four are used as concentration prediction

samples. At the same time the component enoxacin (ENO) is

used as interference species. The concentrations of all sam-

ples are given in Table I. Figure 4 shows the resolved

excitation and emission spectral profiles together with the

actual profiles using APTLD with p¼ q¼ r¼ 1020, PARAFAC

and ATLD under the condition that three factors were

Table II. Effect of penalty factor (p, q, r) on recoveries of concentration profiles for four species of an arbitrarily chosen one of

seven simulated samples (six randomly initialized runs were performed) and iterations of APTLDa

N¼ 4 N¼ 5

PF IND 1 2 3 4 IT 1 2 3 4 IT

p¼ q¼ r¼ 0 Max 1.0032b 0.9948 1.0002 1.0254 1038
Min 1.0031 0.9936 0.9929 0.9950 833

p¼ q¼ r¼ 10�3 Max 1.0033 0.9948 1.0001 1.0258 1054
Min 1.0029 0.9935 0.9928 0.9955 750

p¼ q¼ r¼ 1 Max 1.0030 0.9974 0.9925 1.0553 342 1.0029 0.9969 0.9897 1.0710 350
Min 1.0028 0.9960 0.9856 1.0252 214 1.0006 0.8992 0.9812 0.8987 128

p¼ 1, q¼ r¼ 104 Max 1.0052 1.0059 0.9925 1.0131 121 1.0058 1.0060 0.9934 1.0137 291
Min 1.0052 1.0059 0.9925 1.0131 56 1.0054 1.0059 0.9923 1.0076 59

p¼ q¼ r¼ 102 Max 1.0041 1.0037 0.9906 1.0289 171 1.0049 1.0079 0.9900 1.0260 155
Min 1.0041 1.0036 0.9898 1.0253 70 1.0048 1.0076 0.9890 1.0230 50

p¼ q¼ r¼ 104 Max 1.0046 1.0067 0.9923 1.0185 55 1.0063 1.0131 0.9922 1.0135 105
Min 1.0046 1.0067 0.9912 1.0141 36 1.0052 1.0062 0.9907 1.0095 59

p¼ 104, q¼ r¼ 108 Max 1.0046 1.0067 0.9913 1.0184 59 1.0063 1.0131 0.9911 1.0104 141
Min 1.0046 1.0067 0.9912 1.0181 30 1.0063 1.0059 0.9908 1.0094 21

p¼ q¼ r¼ 108 Max 1.0046 1.0067 0.9924 1.0182 52 1.0063 1.0131 0.9911 1.0200 128
Min 1.0046 1.0067 0.9913 1.0138 30 1.0048 1.0059 0.9908 1.0106 28

p¼ 108, q¼ r¼ 104 Max 1.0046 1.0067 0.9913 1.0185 72 1.0063 1.0130 0.9922 1.0135 99
Min 1.0046 1.0067 0.9912 1.0183 56 1.0052 1.0062 0.9908 1.0098 63

p¼ q¼ r¼ 1020 Max 1.0046 1.0067 0.9913 1.0184 64 1.0063 1.0131 0.9910 1.0106 79
Min 1.0046 1.0067 0.9912 1.0181 27 1.0063 1.0130 0.9908 1.0095 51

aPF, IND, Max, Min and IT denote ‘penalty factor’, ‘index’, ‘maximum’, ‘minimum’ and ‘iterations’ respectively.
b1.0032 is recovery (resolved over actual concentration). For convenience of presentation, all recoveries have only four significant digits after the
decimal point.
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chosen, which was the same as the dimensionality of the

model. Table IV displays the resolved concentrations of

prediction samples using APTLD, PARAFAC and ATLD.

These results indicate that all three algorithms give satisfac-

tory resolutions for excitation and emission spectral profiles.

However, the APTLD method performs a little better than

the PARAFAC and ATLD algorithms in resolveing concen-

trations of prediction samples. Moreover, the mean iteration

number for APTLD (IT¼ 19) was also much less than that for

PARAFAC (IT¼ 324) but a little more than that for ATLD

(IT¼ 9). The results reveal that the APTLD algorithm can not

only resolve the profiles accurately but also overcome the

Table III. Effect of N on recoveries of concentration profiles

for four species of an arbitrarily chosen one of seven simu-

lated samples (six randomly initialized runs were performed)

and iterations of APTLD

N 1 2 3 4 Iterations

4 1.0046 1.0067 0.9912 1.0184 40
5 1.0027 1.0093 0.9903 1.0250 68
7 1.0040 1.0146 0.9881 1.0271 146
10 1.0068 1.0091 0.9914 1.0101 153
15 1.0038 1.0045 0.9887 1.0318 252
25 1.0120 1.0039 0.9762 1.0626 230

Figure 4. Resolved (full line) and actual (broken line) profiles using three algorithms on real data set when

component number was chosen as four: (A1), (B1) APTLD; (A2), (B2) PARAFAC; (A3), (B3) ATLD (N¼ 4).
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slow convergence brought on by the random initialization to

some extent.

6. CONCLUSIONS

The APTLD method has been developed for the trilinear

analysis of three-way data arrays. Its performance was

compared with that the PARAFAC and ATLD algorithms

by simulation and practical application to excitation–emis-

sion matrix fluorescence data. The results presented have

shown that the proposed algorithm can simultaneously

provide solutions with acceptable accuracy for all analytes

present in the samples and relieve the slow convergence

brought on by the random initialization. Moreover, the

insensitivity to the estimated component number is of prac-

tical significance, eliminating the need for selection of the

proper one. Furthermore, the performance of the APTLD

method sometimes surpasses that of the PARAFAC algo-

rithm in the prediction of concentration profiles even if the

component number chosen is the same as the actual number

of underlying factors in real samples. In addition, the per-

formance of the APTLD method sometimes exceeds that of

the ATLD algorithm in the prediction of concentration

profiles when the component number chosen is greater

than or equal to the actual number of underlying factors.

Although the penalty factors (p, q and r) have some influ-

ence, the performance of APTLD is very stable as long as the

value of the penalty factors is greater than 104.

APPENDIX: PROGRAM WRITTEN IN
MATLAB FOR APTLD ALGORITHM

%XPI=[X..1, X..2,..., X..k], size: (I * J )* K

%epsilon is the tolerance

%I is the row number

%J is the column number

%K is the channel number

%N is the estimated component number

%LFT is the loss function

%M is the iterative number

function [A, B, C, LFT, M]=APTLD (XPI,K,N,epsilon)

if nargin< 4

epsilon=10*eps*norm(XPI,1)*max(size(XPI));

end

[I, JK]=size(XPI); J=JK/K;

XIJK=reshape (XPI, I, J, K); %cut X along K direction

XJKI=shiftdim(XIJK,1); %cut X along I

XKIJ=shiftdim(XIJK,2); %cut X along J

% initialization of A & B

A=rand(I,N);B=rand(J,N);C=zeros(K,N);

TOL=10; M=0; LFT=[ ]; LF=0.01; p=10^20;q=10^20;r=10^20;

% initialization of C

CD1=0;CD2=0;aa=0;bb=0;CD3=0;CD4=0;PB=pinv(B’,epsi-

lon);PA=pinv(A’,epsilon);Da=diag(ones(N,1)./diag(A’*A));

Db=diag(ones(N,1)./diag(B’*B));

for i=1:I

CD1=CD1+XJKI(:,:,i)’* PB*Da*diag(A(i,:));

aa=aa+diag(A(i,:))*Da*diag(A(i,:));

end

for j=1:J

CD2=CD2+XKIJ(:,:,j)*PA*Db*diag(B(j,:));

bb=bb+diag(B(j,:))*Db*diag(B(j,:));

CD3=CD3+XKIJ(:,:,j)*A*diag(B(j,:));

CD4=CD4+diag(B(j,:))*A’*A*diag(B(j,:));

end

C=(p*(CD1+CD2)+CD3)*pinv(p*aa+p*bb+CD4, epsilon);

%start to caculate LFT and do iteration

while TOL>epsilon & M<500

%estimation of B

BD1=0;BD2=0; BD3=0;BD4=0;cc=0;aa=0;PC=pinv(C’,epsilon);

Dc=diag(ones(N,1)./diag(C’*C));

for k=1:K

BD1=BD1+XIJK(:,:,k)’*PA*Dc*diag(C(k,:));

cc=cc+diag(C(k,:))*Dc*diag(C(k,:));

end

for i=1:I

BD2=BD2+XJKI(:,:,i)*PC*Da*diag(A(i,:));

aa=aa+diag(A(i,:))*Da*diag(A(i,:));

BD3=BD3+XJKI(:,:,i)*C*diag(A(i,:));

BD4=BD4+diag(A(i,:))*C’*C*diag(A(i,:));

end

B=(q*(BD1+BD2)+BD3)*pinv(q*cc+q*aa+BD4, epsilon);

%estimation of A

AD1=0;AD2=0;AD3=0;AD4=0;bb=0;cc=0;PB=pinv(B’,epsilon);

Db=diag(ones(N,1)./diag(B’*B));

for j=1:J

AD1=AD1+XKIJ(:,:,j)’*PC*Db*diag(B(j,:));

bb=bb+diag(B(j,:))*Db*diag(B(j,:));

end

for k=1:K

AD2=AD2+XIJK(:,:,k)*PB*Dc*diag(C(k,:));

cc=cc+diag(C(k,:))*Dc*diag(C(k,:));

AD3=AD3+XIJK(:,:,k)*B*diag(C(k,:));

AD4=AD4+diag(C(k,:))*B’*B*diag(C(k,:));

end

A=(r*(AD1+AD2)+AD3)* pinv (r*bb+r*cc+AD4, epsilon);

% normalization of A & B

for n=1:N

Table IV. Resolved concentrations of prediction samples using APTLD, PARAFAC and ATLD

Real concentration APTLD PARAFAC ATLD

Sample OFL NOR OFL NOR OFL NOR OFL NOR

7 0.0160 0.0120 0.0159 0.0119 0.0159 0.0118 0.0159 0.0118
8 0.0200 0.0200 0.0201 0.0195 0.0202 0.0194 0.0202 0.0197
9 0.0280 0.0160 0.0282 0.0160 0.0283 0.0159 0.0282 0.0156
10 0.0400 0.0200 0.0404 0.0199 0.0405 0.0198 0.0403 0.0196
EDa 0.4356 0.5660 0.5947 0.6750 0.4243 0.6708

aEuclidean distance (�10�3) between real concentrations and recovered concentrations profiles.
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A(:,n)=A(:,n)./sqrt(sum(A(:,n).*A(:,n))); B(:,n)=B(:,n)./

sqrt(sum(B(:,n).*B(:,n)));

end

%estimation of C

CD1=0;CD2=0;aa=0;bb=0;CD3=0;CD4=0;PA=

pinv(A’,epsilon);

Da=diag(ones(N,1)./diag(A’*A));

for i=1:I

CD1=CD1+XJKI(:,:,i)’*PB*Da*diag(A(i,:));

aa=aa+diag(A(i,:))*Da*diag(A(i,:));

end

for j=1:J

CD2=CD2+XKIJ(:,:,j)*PA*Db*diag(B(j,:));

bb=bb+diag(B(j,:))*Db*diag(B(j,:));

CD3=CD3+XKIJ(:,:,j)*A*diag(B(j,:));

CD4=CD4+diag(B(j,:))*A’*A*diag(B(j,:));

end

C=(p*(CD1+CD2)+CD3)*pinv(p*aa+p*bb+CD4, epsilon);

%stopping criterion

%calculate loss function

LFTT=0;

for k=1:K

XXX(:,:,k)=A*diag(C(k,:))*B’;

end

for k=1:K

LFTT=LFTT+trace((XIJK(:,:,k)-XXX(:,:,k))’*(XIJK(:,:,k)-

XXX(:,:,k)));

end

TOL=abs((LFTT-LF)/LF);

LFT=[LFT,LFTT];

LF=LFTT;

M=M+1;

end

%post-processing to keep sign convention

[maxa,inda]=max(abs(A)); [maxb,indb]=max(abs(B));

asign=ones(N,1);bsign=ones(N,1);

for n=1:N

asign(n)=sign(A(inda(n),n));

bsign(n)=sign(B(indb(n),n));

end

A=A*diag(asign);B=B*diag(bsign);C=C*diag(asign)

*diag(bsign);
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