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Abstract 

Three-way partial least squares (PLS) was applied to kinetic-spectrophotometric data. The coupling reaction of diazo- 
tized sulfanilamide with o-, m- and p-amino benzoic acid (ABA), and with orciprenaline (ORC), to give azodyes was moni- 
tored. Three binary mixtures of substrates, i.e., o-ABA/ORC, m-ABA/p-ABA and o-ABA/m-ABA,  with different values 
of the rate constant ratio and spectra which overlapped seriously were studied. The spectra of the mixtures were scanned 
with a 2 nm resolution every 30 s during ca. 15 min. The data sets contained from 30 X 36 to 30 X 48 time-wavelength 
data. Nine mixtures of each binary combination of substrates were used for calibration, thus the three-way calibration data 
sets contained from 9 X 30 X 36 to 9 X 30 x 48 concentration-time-wavelength data. The two-way PLS modelling was 
constructed on the basis of single wavelength kinetic curves, and the three-way PLS modelling was applied to series of 
three-way data arrays consisting of a number of selected wavelengths each (up to the whole spectra). The results based on 
three-way data arrays were better than that of ordinary PLS, particularly with mixtures having both a low rate constant ratio 
and small spectral differences. 

1. Introduction 

Together with the introduction of advanced instru- 
mentation capable of generating multi-dimensional 
data arrays, three- and multi-way methods of data 
analysis have provoked the interest of chemists and 
many applications have been described [1-15]. In 
quantitative analysis, a calibration set with data taken 
at increasing concentrations of the analytes is neces- 
sary. Therefore, concentration provides one dimen- 
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sion of the signal-concentrat ion data array. To con- 
struct a three-way array, the other two dimensions can 
be provided by two-dimensional instrumentation in- 
cluding exci tat ion-emission fluorimetric scans, or 
separation techniques coupled to UV-vis ib le ,  in- 
frared, or mass spectrometric detection. Another way 
of generating a two-dimensional data array is to fol- 
low a chemical reaction with an instrument provid- 
ing uni-dimensional scans, e.g., a diode-array U V -  
visible spectrophotometer. The kinetic-spectropho- 
tometric information obtained, together with the mul- 
tivariate calibration at several concentrations, gives 
rise to a three-way data array which can be useful to 
resolve mixtures of compounds with very similar 
properties. 
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Multicomponent determinations is an area of great 
interest in the context of kinetic analysis [16]. Since 
many years ago, mixtures of analytes have been re- 
solved on the basis of their different reaction rates by 
the method of proportional equations [17,18]. How- 
ever, only a small fraction of the data collected is 
used, which leads to poor precision. More recently, 
simultaneous nonlinear regression of the rate con- 
stants and the initial concentrations of the analytes has 
been used [19-21]. Also, the Kalman filter is widely 
used for the kinetic determination of analytes in mix- 
tures, and many applications have been described 
[22-27]. The linear form of the Kalman filter re- 
quires invariant rate constants to be assumed from run 
to run which is a serious drawback, since the rate 
constants are functions of many experimental condi- 
tions. By employing the nonlinear form of the filter, 
known as the extended Kalman filter, invariant rate 
constants are not required and the rate constants and 
other calibration factors can be incorporated into the 
filter model [27-29]. An algorithm which uses the 
Kalman filter for the simultaneous determination of 
analytes using first- and second-order kinetic data has 
been developed [30]. 

To adequately apply these methods, however, the 
model should be known completely, and the parame- 
ters of the model, e.g., rate constants, molar absorp- 
tivities and so on, should be accurately determined 
during calibration. These are 'hard-modelling' meth- 
ods in which an ignored factor introduces large er- 
rors. This happens frequently in kinetic analysis when 
factors such as side reactions, catalytic effects or a 
temperature drift are not included in the kinetic 
model. In multicomponent analysis the possible in- 
teractions between the analytes which can reinforce or 
reduce the overall signal can also occur. To consider 
one or several of these factors can extraordinarily 
complicate both the model and the calibration proce- 
dure, thus hindering application of hard-modelling 
methods to real samples. Thus, owing to the com- 
plexity of the real world, the scope and applicability 
of hard-modelling methods is severely limited. 

On the contrary, no limits derived from the com- 
plexity of the system are dictated by the so-called 
soft-modelling methods. Thus, soft-modelling meth- 
ods can be universally applied to systems of all types 
without almost any previous knowledge about the 
system, e.g., the nature and even the number of sig- 

nificant parameters (such as how many unknown 
concentrations) involved in the system can be ig- 
nored. In soft-modelling methods, such as principal 
component regression (PCR) and two- and multi-way 
partial least squares (PLS) regression, no model is 
previously assumed, and an empirical model is de- 
rived from the data themselves. Usually, the model is 
constructed from a series of mixtures known as the 
calibration set. Very often in PCR and PLS a linear 
approach is assumed. In linear soft-modelling, the re- 
lationships between the evaluated parameters and the 
measured signal should be linear, or at least it should 
be possible to obtain linear relationships by applying 
some kind of transformation to the signal, to the 
evaluated parameters or to both the signal and the 
parameters. Otherwise, an error which is partitioned 
among the evaluated parameters is produced. These 
calibration techniques have been scarcely applied to 
kinetic data [31,32], especially to three-way kinetic- 
spectral data arrays. 

The two-way PLS calibration method has been 
widely used to multicomponent analysis of equilib- 
rium systems, and also the PLS technique has been 
extended to the treatment of three-way data array by 
Wold et al. [2], which has been extensively used in 
chromatography [8-10]. In this work, binary mix- 
tures of compounds were resolved by two- and three- 
way PLS using kinetic data taken at a single wave- 
length, and two-way kinetic-spectral data provided 
by a photodiode array detector, respectively. The po- 
tential of these techniques for the kinetic determina- 
tion of mixtures of drugs was evaluated. The cou- 
pling reaction of diazotized sulfanilamide with the o-, 
p -  and m-amino benzoic  acids, and with or- 
ciprenaline to yield intensely coloured azo dyes, was 
monitored. Binary mixtures of the substrates with 
different ratios of the rate constants, and partially 
overlapped spectra of the products, were studied. The 
advantage of the three-way PLS relative to ordinary 
two-way PLS is discussed. 

2. Theoretical 

Lowercase bold characters are used for column 
vectors, uppercase bold characters for two-way ma- 
trices, and underlined uppercase bold characters for 
three-way matrices. The transpose of a matrix or a 



Y.-L. Xie et al. / Chemometrics and Intelligent Laboratory Systems 27 (1995) 211-220 213 

vector is represented by the superscript T. Unless 
otherwise stated, lowercase and uppercase plain 
characters are used as running indices and to indicate 
the number of  dimensions of the vectors or matrices, 
respectively. Lowercase and uppercase plain charac- 
ters are also used for scalars. 

In linear PLS no model is required, but a linear 
relationship between the response, i.e., the ab- 
sorbance, and the evaluated parameters, i.e., the ini- 
tial concentrations of the analytes, should exist. Let 
us assume a mixture containing L active substrates, 
Cl, which couples with a single reagent, R, follow- 
ing a first- or pseudo-first order reaction: 

C I + R ~ P  l 

In the systems used in the experimental part, the 
change of absorbance is due only to the change in the 
concentration of the products, Pt. If it is assumed that 
the absorbances are additive and follow the Lam- 
ber t -Beer  law, we can write: 

Ai,j= FSi,lc,[1- e x p ( - k t t j ) ]  (1) 

where A~,i is the change of absorbance of the mix- 
ture at the time tj ( j  = 1 . . . . .  J )  and the wavelength 
A~ (i = 1 . . . . .  I) ,  S~, t is the sensitivity (the molar 
absorptivity multiplied by the optical path length) of 
Pt at A~, c I is the initial concentration of  C l (l = 1, 
. . . .  L), and k t is the corresponding rate constant. If 

the model of  Eq. (1) is followed, a linear relationship 
between Ai, j and c l exists. However, this linear rela- 
tionship is preserved in many other instances, as far 
as both the Lambert-Beer  and additivity laws and the 
first- or pseudo-first order behaviors are followed. 
Other conditions are not required. Thus, for instance 
if the analytes also absorb, Eq. (1) should be re- 
placed by: 

ai ,y=~Cl[Si , t+(S; , t -Si , t )exp(-kt t j )  ] (2) 

where SI. t is the sensitivity with respect to the ana- 
lytes. Furthermore, if the products are not stable and 
are hydrolysed following a first order law, Eq. (1) is 
replaced by: 

kl,l 
Ai,i ~-'Si,lCl k 2 , l _  kl, ! 

×[exp ( - k l , t t j ) -  e x p ( -  k2,ttj) ] (3) 

where kl, l and k2, t represent the first-order rate con- 

stants for the formation and hydrolysis of the Pl 
products, respectively. In both Eqs. (2) and (3) a lin- 
ear relationship between Ai, j and c t is preserved. 
Therefore, any of the Eqs. (1), (2) or (3) can be writ- 
ten as: 

A = Es l c tk  I = SCK (4) 

where A is a I × J matrix which contains all the 
wavelength-t ime information, s l is the sensitivity 
vector of PI, and k t is a vector containing the kinetic 
information for the lth component and whose generic 
element is {1 - exp(-kzt j )}  or any other function of 
tj. Thus, S ( =  {sl}) is an I × L matrix containing the 
spectral information of the analytes, K ( = {kt}) is an 
L × J matrix which represents the kinetic informa- 
tion, and C is the L × L diagonal matrix of the initial 
concentrations of the analytes. 

Eqs. (1)-(4)  are not used as models for the cali- 
bration and evaluation processes, but only as a way 
to show that a linear relationship between the re- 
sponse and the concentrations to be estimated exists. 
An alteration of  the model, such as the situation rep- 
resented by Eqs. (2) or (3) with respect to Eq. (1), 
would bring much trouble to model-based methods, 
but causes no effects when soft-modelling techniques 
are used, because no explicit model is necessary to be 
adopted in the latter. To construct the prediction 
model, a calibration set constituted by N mixtures of  
known composition and different concentrations of 
the substrates should be measured. From this N × I 
X J three-way data array, the following three-way 
response model is obtained: 

Ani j = Y',SilCnlKjl (5 )  

or: 

A =  Es l ® c t ® k I (6) 

where A is a N × I X J three-way response data ar- 
ray, and Ani j is its generic element; c t is the vector 
of the concentration of the lth analyte in the N mix- 
tures, and the symbol ® represents the tensor prod- 
uct (outer product) [2]. 

The PLS based on two blocks of  matrices is well 
known and widely used in analytical chemistry. The 
matrices (e.g., X and Y) are decomposed into score 
matrices and loading matrices, with the constraint that 
the score vectors of the same component (factor, or 
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latent variable) are connected by the so-called inner 
relation. The PLS model for matrix form data is: 

X = Et iP  f + E = TP T + E 

Y = E u i q  T + F = UQ T + F (7) 

U = T B + H  

and the prediction equation for Y is: 

Y = TBQ T + F (8) 

where the typical elements of the T and U matrices 
are tns and uns, respectively. 

The generalization of PLS to the three-way data 
arrays X and _Y was described by Wold et al. [2]. As- 
suming that X and Y consist of the predictors and the 
values to be--predi~-ed, respectively, three-way PLS 
leads to the following model: 

X~i j =  ~ t ~ p ~ j  + emj ; n =  l . . . . .  N ; i =  l . . . . .  I; 

j = l  . . . . .  J 

Y~j  = E u ~ q ~ y  + fn~y; n = 1 . . . . .  N ;  i = 1 . . . . .  M ;  

j : 1 . . . . .  P (9) 

which can be written in matrix-tensor form: 

X = T ® p T + E  

Y =  U ®QT + F  (10) 

and 

U = T B  + H (11) 

where P is a three-way matrix with typical element 
Psi j ,  an-d Q, E and F are analogous to P. The orders 
of X and Y can be different, and in thff study, Y(C) 
h a d a  lowe--r order than X(A). The PLS decomposi- 
tion of two blocks of matrices and the three-way data 
array is illustrated in Fig. 1. 

To estimate the parameters in the three-way model 
of Eq. (10), Wold suggested to unfold the three-way 
array in the direction which leaves the first mode in- 
tact, which in our case is the concentration mode 
[1,2]. Thus, the model parameters tns, Psi j, Uns and 
qsij are estimated on the basis of the unfolded data 
matrices A and C. 

Following the analogy between this procedure and 
the procedure which is normally used to process ki- 
netic data monitored on a single wavelength, the slice 
of the three-way response A referred to one wave- 

~ q  

t [ - -  - -  - -  7 ]  
/ / 

I 
I 

I 

- , ~  
/ 

Fig. 1. A schematic view of the PLS modelling for two- and three- 
way data arrays: PLS model with one latent variable for two blocks 
of matrices X and Y (upper part) and for the three-way data array 
X and data array Y_ (or Y) (lower part). The dashed lines represent 
~ e  possible absence of the third dimension. 

length was picked out and used to construct the ordi- 
nary (two-way) PLS calibration model. 

The NIPALS algorithm [33] was used to calculate 
the latent variables in both three-way and ordinary 
PLS, and cross validation (by the leave-one-out 
method) was adopted to determine the number of la- 
tent variables to be retained. 

3. Exper imenta l  

3.1. Appara tus  

An HP 8452A diode array spectrophotometer 
(Hewlett-Packard, Palo Alto, CA, USA) provided 
with a 1-cm quartz cell was used. The pH values were 
adjusted with a Crison MicroPH 2001 pH meter pro- 
vided with a combined glass electrode. A 500 OA pis- 
ton pipette was used to start the reactions. A 486 IBM 
compatible microcomputer was used to control the 
spectrophotometer and to acquire and treat the data. 
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Data acquisition began 10 s after starting the reac- 
tions. The data files produced by the HP 89531A op- 
eration software (Hewlett-Packard) were processed 
by the author's own programmes which were written 
in MATLAB (MathWorks, Sherborn, MA, USA). 

3.2. Reagents, solutions and procedures 

Reagent grade o-, m- and p-amino benzoic acid 
(ABA) (Merck, Darmstadt, Germany), orciprenaline 
(ORC) (kindly donated by Boehringer-Ingelheim, 
Barcelona, Spain), sulfanilamide (Sigma, St. Louis, 
MO, USA), sulfamic acid, sodium nitrite and sodium 
dodecyl sulphate (SDS) (Fluka, Buchs, Switzerland), 
and citric acid (Panreac, Barcelona, Spain) were used. 
Distilled demineralized water (Barnstead, Sybron, 
Taunton, MA, USA) was used throughout. The 
molecular structure of the reagents is shown in Fig. 
2. The coupling reaction is 

H - A r - R  + Ar ' -N  = N + 
Substrate Electrophilic agent 

A r ' - N  = N - A r - R  + H + 
Azodye 

To buffer the pH, mixtures containing citric acid 
and sodium hydroxide were prepared. The final buffer 
concentration was 0.25 mol 1-t in all cases. To pre- 
pare the stock solutions of the substrates, 17.5 mg 
o-ABA, 17.5 mg m-ABA, 18.5 mg p-ABA and 56.3 
mg ORC were dissolved in 1 ml ethanol, and diluted 

(i) 

R ~ - N H 2  

R' = COOH m o-, m- or p- position 

(lID 

? ÷ 
H2 N ' - ~ I o ~  N- -N 

(H) 

Ho-c,H-  H 
CH2  "OH 
NH 

I 
CH 

/ \ 
H3C CH 3 

Fig. 2. Molecular structure of the reagents: (I) amino benzoic acids; 
(II) orciprenaline; (III) diazonium ion of sulfanilamide. 

Table 1 
First-order rate constants for o-, m-, and p-ABA, and ORC at dif- 
ferent pH values in a 2% SDS medium 

Substrates a ~tma x (rim) pH k + s k 
(S I )<10-3) b 

o-ABA 370 4.10 6.31 + 0.12 
ORC 406 4.10 1.20 + 0.03 

m-ABA 360 3.90 8.16 _+ 0.40 
p-ABA 368 3.90 1.67 + 0.11 

o-ABA 370 3.80 4.48 _+ 0.08 
m-ABA 360 3.80 7.14 _+ 0.07 

ABA, amino benzoic acid; ORC, orciprenaline. 
b Obtained from three solutions with different substrate concentra- 
tions. 

with water to 50 ml. The 4 X 10 2 mol 1 1 sulfanil- 
amide stock solution was prepared in 0.3 mol 1-1 

HC1. The 0.2 mol 1-1 NaNO2, 0.5 mol 1 1 sulfamic 
acid and 20% SDS solutions were made with water. 

To prepare the 1 × 10 2 mol 1-1 diazonium ion 
solution, 12.5 ml sulfanilamide was introduced in a 
50 ml volumetric flask, 15 ml NaNO 2 solution was 
added, the mixture was allowed to react for 10 min, 
15 ml sulfamic acid was added to destroy the excess 
nitrite, and after 15 rain the solution was made up to 
the mark with water. The diazonium ion solution was 
renewed daily. 

Binary mixtures of the substrates were prepared by 
introducing aliquots of the corresponding stock solu- 
tions, 20 ml buffer solution and 2.5 ml SDS into a 25 
ml volumetric flask, and the volume was completed 
with water. A 2.25 ml volume was transferred into a 
dry 1-cm quartz cell, the reaction was started by in- 
jecting 0.25 ml diazonium ion solution, and a key- 
board button was simultaneously pressed to start the 
data acquisition period (t = 0). Mixing was facili- 
tated by bubbling the solution in the cell four times 
with the piston pipette. The spectra were scanned ev- 
ery 30 s, from t = 10 s to t = 910 s. One point every 
2 nm was obtained (the data acquisition resolution of 
the HP8452A spectrophotometer). The blank was 
prepared in the same way in the absence of the sub- 
strate. The blank absorbance matrix was always sub- 
tracted from the sample absorbance matrices before 
processing the data. Owing to the perturbations and 
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Fig. 3. Kinetic curves (left) and azodye spectra (right) for 5.06 × 10 5 M o-ABA (1) and m-ABA (2). 

noise, the first spectrum (t = 10 s) was rejected and, 
therefore, each kinetic data set consisted of 30 spec- 
tra. 

4. Results and discussion 

4.1. Optimization of the reaction conditions 

Since only the basic form of the substrates reacts, 
coupling with diazonium ions is largely affected by 
pH [34]. Thus, at pH values lower than 3.5, the reac- 
tions were too slow, and at pH values higher than 5.5, 

some of the analytes coupled in less than 1 min, 
which was not suitable for the manual mixing proce- 
dure used. Also, at pH values higher than 5.5, the ab- 
sorbance of the reagent blank was large. This has 
been shown to be due to hydrolysis of the diazonium 
ion to yield a phenol which couples with the excess 
reagent [35]. Also, at higher pH values, the azo dyes 
were unstable, and the absorbance decreased rapidly 
after reaching a maximum value. It was observed that 
the addition of SDS alleviated this problem and, 
therefore, a final concentration of 2% SDS was used. 

To evaluate the rate constants, three solutions of 
each substrate at increasing concentrations were pre- 
pared, the procedure given above was applied, and the 

Table 2 
Composition of the mixtures used for calibration (orthogonal design) and evaluation of the PLS procedures 

Experiment o-ABA/ORC b m - A B A / p - A B A  b o - A B A / m - A B A  b 
NO. a (×10 -5 moll -1) (×10 -5 moll 1) (×10 5 moll I) 

1 2.759/3.456 1.839/1.945 2.299/2.299 
2 4.139/3.456 3.219/1.945 2.299/3.679 
3 5.518/3.456 4.598/1.945 2.299/5.058 
4 2.759/5.184 1.839/3.403 3.679/2.299 
5 4.139/5.184 3.219/3.403 3.679/3.679 
6 5.518/5.184 4.598/3.403 3.679/5.058 
7 2.759/6.912 1.839/4.861 5.058/2.299 
8 4.139/6.912 3.219/4.861 5.058/3.679 
9 5.518/6.912 4.598/4.861 5.058/5.058 

10 3.679/4.320 2.759/3.889 3.219/2.759 
11 3.679/6.048 3.679/2.917 4.139/4.599 
12 4.599/4.320 2.299/3.403 4.139/2.759 
13 4.599/6.048 3.219/2.431 3.219/4.599 

a 1-9, calibration set; 10-13, evaluation set. 
b ABA, amino benzoic acid; ORC, orciprenaline. 
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c o r r e s p o n d i n g  k ine t ic  cu rves  were  fitted. The  Powel l  

n o n l i n e a r  f i t t ing  a lgo r i t hm was  used  [36]. T he  resul t s  

are g iven  in Tab le  1, and  s h o w e d  a large va r i a t ion  o f  

the  rate cons t an t s  w i th  pH. T he  o - A B A / O R C  mix-  

tures  had  the  la rges t  spect ra l  and  k ine t ic  d i f fe rences  

b e t w e e n  t he  t w o  a n a l y t e s ,  w h e r e a s  fo r  the  o-  

A B A / m - A B A  mixtures ,  the rat io of  the rate con-  

s tants  was  the smal les t ,  o f  abou t  1.6, and  the spect ra  

o v e r l a p p e d  se r ious ly .  T h e  k i ne t i c  c u r v e s  and  the  

spec t ra  o f  the azo dyes  ob ta ined  w i th  two o - A B A  and 

m - A B A  so lu t ions  are s h o w n  in Fig. 3. It can  be  ob-  

se rved  that  the m - A B A  azodye  w as  not  s table ,  w h i c h  

is not  c o n s i d e r e d  in Eq. (1). 

4.2. M u l t i v a r i a t e  ca l ibra t ion  

To es tab l i sh  the ca l ib ra t ion  sets, n ine  mix tu re s  of  

each  b ina ry  c o m b i n a t i o n  of  subs t ra tes  were  p repa red  

fo l l owing  an o r thogona l  des ign.  To eva lua te  the pre-  

d ic t ive  capaci ty  of  the PLS m e t h o d s  for  each  c o m b i -  

na t ion  of  subst ra tes ,  the c o r r e s p o n d i n g  eva lua t ion  sets  

were  prepared.  The  concen t r a t i ons  used  were  w i th in  

the r anges  e m b r a c e d  by  the  ca l ib ra t ion  sets  (Tab le  2). 

For  each  b ina ry  c o m b i n a t i o n ,  and on  the bas i s  of  s in-  

gle w a v e l e n g t h  k ine t ic  curves ,  a two-way  PLS cali-  

b ra t ion  mode l  was  cons t ruc ted .  T h r e e - w a y  m o d e l l i n g  

was  appl ied  to ser ies  of  t h ree -way  data  ar rays  con-  

Table 3 
The estimated error AARE of the evaluation mixtures (experiments 10-13 listed in Table 2) by using two- and three-way PLS with different 
sizes 

Substrates a No. of wavelengths Wavelength range used in the evaluation (A A) and the corresponding AARE (%) b 

o-ABA/ORC 1 A A: 350 362 374 386 398 410 422 434 422 
AARE: 8.5 6.5 4.0 2.5 2.5 2.9 3.6 5.0 6.1 

6 A A: 350-360 374-384 386-396 398-408 410-420 434-444 
AARE: 7.5 2.6 2.4 2.8 3.1 3.9 

12 AA: 350-372 374-396 398-420 422-444 
AARE: 5.1 2.4 3.0 4.1 
A A: 350-396 398-444 
AARE: 2.4 3.1 
A A: 350-444 
AARE: 2.6 
A A: 350 362 378 394 406 414 422 430 
AARE: 4.5 4.2 4.1 4.0 3.8 4.6 9.1 15 
AA: 350-358 370-378 380-388 390-398 400-408 420-428 
AARE: 4.4 4.1 4.0 4.0 3.1 5.1 
AA: 350-368 370-388 390-408 410-428 
AARE: 4.3 4.0 3.1 2.6 
~A: 350-388 390-428 
AARE: 4.1 3.1 
AA: 350-430 
AARE: 4.1 
AA: 350 358 366 374 382 390 398 406 414 
AARE: 13 11 14 17 17 19 21 23 25 
AA: 350-360 362-372 374-384 386-420 398-408 410-420 
AARE: 5.3 3.5 4.5 3.4 4.4 9.1 
AA: 350-372 374-396 398-420 
AARE: 4.2 4.2 3.3 
AA: 350-386 388-420 
AARE: 5.9 4.1 
A A: 350-420 
AARE: 4.1 

24 

48 

m-ABA/p-ABA 1 

5 

10 

20 

41 

o-ABA/m-ABA 1 

6 

12 

24 

36 

420 
15 

a ABA, amino benzoic acid; ORC, orciprenaline. 
b AARE is the average absolute relative error defined in Eq, (12). 
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sisting of a number of selected wavelengths each. The 
number of selected wavelengths was increased until 
the whole spectra was included in the calibration 
model. The average absolute relative error (AARE) 
used for the evaluation of the results was 

~2 c,, - c , ~  × 100 

n ~ 1 l= l Cnl 
AARE = (12) 

NXL 

where (n~ is the estimate for the true concentration, 

Cnl. 

The results of two-way PLS for the three combi- 
nations of substrates are given in Table 3. The results 
obtained by three-way PLS with an increasing num- 
ber of wavelengths are also listed in the same table, 
and the errors yielded when the whole spectrum was 
used are given in Table 4. As shown in Table 3, the 
o -ABA/ORC mixtures gave satisfactory results with 
most of the single wavelength PLS. In contrast, for 
the m-ABA/p-ABA mixtures, the PLS model based 
on single wavelength information gave a much higher 
error. These mixtures presented a similar rate con- 
stant ratio but a more serious spectral overlap than the 
o -ABA/ORC mixtures which can explain the differ- 
ence. With both combinations of substrates, the re- 
sults were worse at the ends of the wavelength range, 
where the molar absorptivities were low, and there- 

fore, where the absorbance change produced by the 
reaction was small. When the information taken at 
several wavelengths was simultaneously used by 
three-way PLS, the results improved. However, when 
the wavelengths associated with larger values of the 
molar absorptivity were used, no advantage of the 
three-way PLS was obtained with respect to the sin- 
gle wavelength PLS. On the contrary, the single 
wavelength PLS method did not provide acceptable 
results when applied to the o-ABA/m-ABA mix- 
tures (AARE was higher than 10%). With three-way 
PLS, and when the number of selected wavelengths 
was increased, the results improved dramatically. The 
results given by at least 12 wavelengths were quite 
acceptable. 

The optimal number of the latent variables used in 
the PLS modelling was different for the three combi- 
nations of substrates. For the o -ABA/ORC and m- 
ABA/p -ABA pairs, the optimal number of latent 
variables retained in the PLS model was always two 
to three, no matter how many wavelengths were used 
to construct the PLS model. In contrast, for the o- 
ABA/m-ABA mixtures, and when a single wave- 
length was used for modelling, usually seven to eight 
latent variables were required. When the number of 
wavelengths increased, the number of latent vari- 
ables for optimal prediction decreased, and when the 
whole spectrum was used, two latent variables were 

Table 4 

Est imated concentra t ions  and relative errors for the evaluat ion mixtures (Nos. 1 0 - 1 3  in Table 2) by  three-way PLS based on the whole  

spect rum (48, 41 and 36 wave leng ths  for the o - A B A / O R C ,  m - A B A / p - A B A  and o-ABA/m-ABA mixtures,  respectively) 

Exper iment  o - A B A  Deviation O R C  Deviation 
No. ( m o l l  - I  x l 0  - 5 )  (%) ( m o l l  l X 1 0 - 5 )  (%) 

I0  3 .596 - 2 . 3  4 .254 - 1.5 

11 3.675 - 0.1 5.901 - 2.4 

12 4 .732 2.9 4 .268 - 1.2 

13 4 .432 - 3.6 5.638 - 6.8 

m - A B A  (tool 1 i X 10 5) Deviat ion (%) p - A B A  (mol 1-1 X 1 0 -  5) Deviation (%) 

10 2.743 - 0.6 3 .873 - 0.4 

11 3 .736 1.5 2 .782 - 4.4 

12 2.545 11. 3.551 4.3 

13 3.301 2.6 2.238 - 7.9 

o - A B A  (mol 1-1 × 10 5) Deviat ion (%) m - A B A  (tool 1- 1 × 1 0 - 5 )  Devial ion (%) 

10 3 .312 - 2 . 7  2.872 4.1 

11 4 .186 1.1 4 .713 2.5 

12 4 .456 7.7 2 .934 6.3 

13 3.058 - 5.0 4 ,737 3.0 
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0.16 - 

0.12  

I f )  

~ 0.06 
D., 

0.04 

0.00 

a 0.16 

0.12 

~ 0 . 0 8  

0.04 

0.00 

N u m b e r  of LV 

b 

N u m b e r  of LV 

Fig. 4. Plot of predictive error sum of squares (PRESS) versus number of latent variables for the o-ABA/m-ABA mixtures when a single 
wavelength (384 nm, left) and the whole spectrum (right) were used. 

enough to provide a good prediction, which is con- 
sistent with the fact that the system contained only 
two independent variables. The PRESS (prediction 
error sum of squares) versus the number of  latent 
variables for a single wavelength and for the whole 
spectrum of the o - A B A / m - A B A  mixtures is given in 
Fig. 4. 

samples is limited owing to the interference and ma- 
trix effects produced by the many factors which are 
ignored, or which would complicate the model ex- 
cessively. However, as far as a linear behavior would 
be present, and in spite of  the complexity of the ma- 
trix, PLS yields good results, which should stimulate 
the development of  applications in these fields. 

5. Conclus ion 

With three-way PLS the potential of the diode ar- 
ray detector to quasi-simultaneously provide kinetic 
and spectral data can be fully exploited. In compari- 
son to PLS applied to single wavelength kinetic data, 
advantages of  the three-way PLS are found in solv- 
ing binary mixtures with both a low rate constant ra- 
tio and small spectral differences, or alternatively, 
with small relative changes in the signal. In addition, 
it has been shown that both PLS methods gave good 
results in the presence of the side reactions of  de- 
composition of  the azo dyes. This could be due to the 
linear nature of  the effect produced by the side-reac- 
tion on the response, if the model of  Eq. (3) was fol- 
lowed, but also to the potential of PLS and other lin- 
ear soft-modelling methods to take care of moderate 
deviations from linearity. This would not be the case 
for any hard-modelling procedure, where the factors 
not considered in the model would degrade their per- 
formance very much. Application of hard-modelling 
techniques to industrial, environmental or biomedical 

Acknowledgements  

This work was supported by the DGICYT of  
Spain, Project PB93/355 .  Y.L.X. thanks the Min- 
istry of  Education and Science of  Spain for a post- 
doctoral grant. 

References 

[1] A.K. Smilde, Three-way analysis, problems and prospects, 
Chemometrics and Intelligent Laboratory Systems, 15 (1992) 
143-157. 

[2] S. Wold, P. Geladi, Kim Esbensen and J. Ohman, Multi-way 
principal components and PLS-analysis, Journal of Chemo- 
metrics, 1 (1987) 41-56. 

[3] E. Sanchez and B.R. Kowalski, Tensorial calibration. I. 
First-order calibration, Journal of Chemometrics, 2 (1988) 
247. 

[4] E. Sanchez and B.R. Kowalski, Tensorial calibration. II. Sec- 
ond order calibration, Journal of Chemometrics, 2 (1988) 
265-280. 



220 Y.-L. Xie et al. /Chemometrics and Intelligent Laboratory Systems 27 (1995) 211-220 

[5] E. Sanchez and B.R. Kowalski, Tensorial resolution: a direct 
trilinear decomposition, Journal of Chemometrics, 4 (1990) 
29. 

[6] D.S. Burdick, X.M. Tu, L.B. McGown and D.W. Millican, 
Resolution of multicomponent fluorescent mixtures by analy- 
sis of the excitation-emission frequency array, Journal of 
Chemometrics, 4 (1990) 15. 

[7] S.S. Li and P.J. Gemperline, Eliminating complex eigenvec- 
tors and eigenvalues in multiway analysis, using the direct 
trilinear decomposition method, Journal of Chemometrics, 7 
(1993) 77-88. 

[8] A.K. Smilde and D.A. Doornbos, Three-way methods for 
the calibration of chromatographic systems: comparing 
PARAFAC and three-way PLS, Journal of Chemometrics, 5 
(1991) 345-360. 

[9] A.K. Smilde, P.H. van de Graaf, D.A. Doornbos, T. Steerne- 
man and A. Sleurink, Multivariate calibration of reversed- 
phase chromatographic systems. Some designs based on 
three-way data analysis, Analytica Chimica Acta, 235 (1990) 
41-51. 

[10] A.K. Smilde and D.A. Doornbos, Simple validatory tools for 
judging the predictive performance of PARAFAC and three- 
way PLS, Journal of Chemometrics, 6 (1992) 11-28. 

[11] Y. Zeng and P. Hopke, Methodological study applying 
three-mode factor analysis to three-way chemical data sets, 
Chemometrics and Intelligent Laboratory Systems, 7 (1990) 
237-250. 

[12] J. Ohman, P. Geladi and S. Wold, Residual bilinearization. 
Part 1. Theory and algorithm, Journal of Chemometrics, 4 
(1990) 79-90. 

[13] J. Ohman, P. Geladi and S. Wold, Residual bilinearization. 
Part II. Application to HPLC-DAD data and comparison with 
rank annihilation factor analysis, Journal of Chemometrics, 4 
(1990) 135-146. 

[14] Y.Z. Liang and O.M. Kvalheim, Constrained background bi- 
linearization, Chemometrics and Intelligent Laboratory Sys- 
tems, 12 (1992) 646-657. 

[15] Y.L. Xie, Y.Z. Liang and R.Q. Yu, Constrained background 
bilinearization with generalized simulated annealing algo- 
rithm, Journal of Chemometrics, 7 (1993) 369-379. 

[16] M. Silva, Recent strategies in automated reaction-rate based 
determination, Analyst, 118 (1993) 681-688. 

[17] H.B. Mark Jr. and G.A. Rechnitz, Kinetics in Analytical 
Chemistry, Interscience, New York, 1968. 

[18] H.A. Mottola, Kinetic Aspects of Analytical Chemistry, Wi- 
ley, New York, 1988. 

[19] J. Havel, J.L. Gonz~ilez and M.N. Moreno, Computation of 
kinetics. 2. Simultaneous regression estimation of rate con- 
stants and initial concentration, Reaction Kinetics and Catal- 
ysis Letters, 39 (1989) 41-48. 

[20] J.J. Baeza-Baeza, G. Ramis-Ramos, F. P6rez-Pl~i and R. 
Valero-Molina, Multi-component analysis using OPKINE, a 
program for the non-linear treatment of kinetic problems, 
Analyst, 115 (1990) 721. 

[21] F. P~rez-Phl, J.J. Baeza-Baeza, G. Ramis-Ramos and J. Palou, 

OPKINE, a multipurpose program for kinetics, Journal of 
Computational Chemistry, 12 (1991) 283. 

[22] P.D. Wentzell, M.I. Kazagannis and S.R. Crouch, Simultane- 
ous kinetic determinations with the Kalman filter, Analytica 
Chimica Acta, 224 (1989) 263-274. 

[23] W.H. Lewis Jr. and S.C. Rutan, Guanidinium-induced differ- 
ential kinetic denaturation of alkaline phosphatase isozymes, 
Analytical Chemistry, 63 (1991) 627-629. 

[24] E. Forster, M. Silva, M. Otto and D. P~rez-Bendito, Enzy- 
matic determination of alcohol mixtures at the nanogram level 
by the stopped flow technique, Analytica Chimica Acta, 274 
(1993) 109-116. 

[25] R. Xiong, A. Velasco, M. Silva and D. P6rez-Bendito, Per- 
formance of the Kalman filter algorithm in differential reac- 
tion-rate methods, Analytica Chimica Acta, 251 (1991) 313- 
319. 

[26] A. Velasco, R. Xiong, M. Silva and D. P6rez-Bendito, Simul- 
taneous kinetic determination of phenols by use of the Kalman 
filter, Talanta, 40 (1993) 1505-1510. 

[27] S.C. Rutan and S.D. Brown, Estimation of first-order kinetic 
parameters by using the extended Kalman filter, Analytica 
Chimica Acta, 167 (1985) 23-27. 

[28] B.M. Quencer and S.R. Crouch, Extended Kalman filter for 
multiwavelength, multicomponent kinetic determinations, 
Analyst, 118 (1993) 695-701. 

[29] B.M. Quencer and S.R. Crouch, Multicomponent kinetic de- 
termination of Lanthanides with stopped-flow, diode array 
spectrophotometry and extended Kalman filters, Analytical 
Chemistry, 66 (1994) 458-463. 

[30] R. Jim6nez-Prieto, A. Velasco, M. Silva and D. P6rez-Bend- 
ito, Kalman filtering of data from first- and second-order ki- 
netics, Talanta, 40 (1993) 1731-1739. 

[31] J. Havel, F. Jim6nez, R.D. Bautista and J.J. Arias Le6n, 
Evaluation of multi-component kinetic analysis data by a par- 
tial least squares calibration method, Analyst, 118 (1993) 
1355-1360. 

[32] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, J. Riba and 
E. Rovira, Kinetic spectrophotometric determination of 
Ga(III)-AI(III) mixtures by stopped-flow injection analysis 
using principal component regression, Talanta, 40 (1993) 
261-267. 

[33] S. Wold, K. Esbensen and P. Geladi, Principal component 
analysis, Chemometrics and Intelligent Laboratory Systems, 2 
(1987) 37-52. 

[34] G. Ramis-Ramos, J.S. Esteve Romero and M.C. Garcla AI- 
varez-Coque, Colorimetric determination of arylamines and 
sulphonamides by diazotization and coupling in a micellar 
solution, Analytica Chimica Acta, 223 (1989) 327-337. 

[35] J.S. Esteve Romero, M.C. Garcia Alvarez-Coque and G. 
Ramis-Ramos, Formation rates and protonation constants of 
azo dyes in a sodium dodecylsulphate micellar solution, Ta- 
lanta, 38 (1991) 1285-1289. 

[36] S.S. Rao, Optimization: Theory and Applications, Wiley 
Eastern Limited, New Delhi, 2nd edn., 1984. 


