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Abstract 

A comparative study was conducted to investigate the performance of several chemometric methods applkd to the 
treatment of Iwo-way kinetic-spectral data with the aim of resolving mixtarcs. The methods involved are ~ - l i ne a r  least 
squares regression performed using the Powell algorithm, the linear and extended galman filter, and paflia[ least squares 
regression. Both simulated and experimental data were processed. The ~oupHng mactiou of diazmized sulfanilamide with 
arylaraines to give azodyes was monitored specUophotometrically, Binary m i n ~  of the substrates with different values of  
tbe rate constant ratio and with varied degrees of spectral overlap were resolved. The effects of several influence factors 
have been studied using numeric simulation. The advantages and the limitations of each method hav© been cva]aated, 

/¢eywords: Chemomctrics; Kinetic methods; Spcctrophoten~try; Mixtem resolution 

I .  I n t r o d u c t i o n  

During the last decade, and in comparison to 
equilibrium methods,  kinetic methods  o f  an-,dysis 
have become increasingly popular owing to their 
simplicity, precision, short analysis  time, t~duced 
susceptibility to interferences and easy automation 
[1]. The  area o f  mult icomponent  determinations is 
one o f  the mos t  active in the context o f  kinetic 
analysis [1,2]. Mixtures o f  reacting analytes have 
been resolved in the past by means  o f  the method o f  
proportional equations [3,4], however,  only a small  
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fraction o f  the data  collected was  used,  which led to 
a poor precision. With the introduction o f  the  com-  
puter  in the chemical  laboratmy, kinetic methods  o f  
analysis have become m o ~  powerfel.  Most  
kinetic sys tems  follow nowlinear  relatio~xships and 
thus, nonlinear regression o f  the initial concentra- 
t ions o f  the aaalytes and the rate constants  should be 
applied [5-7] ,  In the Ieast squares methods,  the sum 
o f  the squares  o f  the differences between the mea-  
s m e d  signal and the reconstructed signal  is c~ ' i -  
mized. In order to assure convergence and to achieve 
accurate ~csults, good initial es t imates  o f  the parame-  
ters o f  the model are necessary. 

The Kaiman filter, a nonlinear regression algo- 
rithm, is also widely used in the kinetic determina- 
tion o f  mixtures [8]. In the Kalman filter, the mean  
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square error of the estimates of the parameters (which 
are called the state variables) is optimized. The least 
sqaar,~s ,rod Kalman filter methods are declared to 
provkie sirfiil~r results u~:ter certain conditions [8]. 
The Kalman filter is a recuTsive algorithm, and initial 
estimates of the state variables and also initial guesses 
for the variance of these estimates and the measure- 
ment variance should be furnished. The Kalman 
filter has various versions, i.e., the linear [8], ex- 
tended [8], adaD:i~,~'. [9] and robust [10] versions that 
are designed to address troublesome analysis in dif- 
ferent areas. The original form of the Kalman filter, 
the linear Kalman filter requires the model to be 
linear with respect to the state variables. The linear 
Kalman filter has been often used for kinetic deter- 
minations, in which first or pseudo first order reac- 
tions are assumed, and the rate constanls of the 
reactions are well-known and supposed to be invari- 
ant from run to run [11-15]. The latter assumption is 
a serious drawback since the rate constants are func- 
tions of many experimental factors (e.g., tempera- 
turn, pH, ionic strength and so on). Thus, the results 
of the linear Kalman filter would be affected drasti- 
cally by the value of the rate constants provided to 
the algorithm [11]. 

If the above conditions are not met, then the 
non-linear form of the Kalman filter, the extended 
Kalman filter, may be used [8,16-23]. Since the 
galman filter was developed to be used with linear 
models, then non-linear models should be linearized. 
Usually a Taylor's series expansion is used. where 
an inherent error caused by truncation of high order 
terms are introduced and it renders the extended 
Kalman filter statistically non-op:imal. In addition, 
the extended Kalman filter is more prone to the 
influence of the initial guesses of the parameters than 
the linear counterpart [17,18,20]. For the extended 
Kalman filter method adopted by most researchers 
and in this study, the rate constants are assumed to 
be time-invariant. The only difference between this 
version of the extended KMman filter and its linear 
counterpart is that the rate constants are regarded as 
parameters to be estimated and are adjusted in the 
process of filter. However, the commonly used ex- 
tended Kalman filter tolerates a certain variation of 
the rate constants [22,23]. The compensation of 
time-variant rate constants caused by the temperature 
variation was studied by Corcoran and Rutan [17,18]. 

For multicomponent kinetic analysis, more applica- 
tions of the linear l~lman filter than that of the 
extended Kalman filter are found in the literature [1]. 

The least squares and Kalman filter algorithms are 
model based, and can be regarded as the so-called 
hard-modelling methods, in which accurate model 
information is indispensable to obtain good results. 
Instead, in soft-modelling methods, no model should 
be previously assumed, and an empirical model is 
derived from the data themselves. Multiple linear 
regression, principal component regression or partial 
least squares regression (PLS) are used to build up 
the model from a number of mixtures known as the 
calibration samples. These procedures have been used 
extensively in equilibrium methods of analysis, but 
they have been scarcely applied to kinetic analysis 
[24-28]. However, a rapid popularization of soft 
modelling methods in the kinetic multicomponent 
determinations is to be expected, owing to uteir 
efficiency in managing with the problems derived 
from the incomplete models, imprecise data sets and 
interactions among the components, which are fre- 
quently found in kinetics. Also it is no necessary to 
supply initial guesses of the parameters of the model, 
as required by the nonlinear regression methods. 

In most of the reported procedures kinetic curves 
monitored on a single wavelength have been used, 
and relatively few applications have taken advantage 
of the multi-wavelength data sets generated by an 
array detector [22,23,28]. Simulated and actual ex- 
periments have demonstrated that the extended 
Kalman filter with the use of multiple wavelength 
detection can tolerate more serious spectral overlap 
and smaller kinetic differences between the analytes 
than the single wavelength approach [22,23]. The 
three way PLS method of Wold et al. [29] has been 
extensively used for the calibration of chromato- 
graphic systems [30-33]. Recently, it has been used 
to treat three way kinetic-spectral data arra:s [28]. 
The three-way PLS based on three way kinetic-speco 
tral data arrays has been claimed to provide better 
results than the two way kinetic PLS method, partic- 
ularly with mixtures having both a low rate constant 
ratio and small spectral differences [28]. 

In this work, the performance of the Powell algo- 
rithm (nonllt~ear least squares regression), the linear 
and the extended galman filters, and the PLS method 
when applied to two-way kinetic-spectral data were 
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comparatively studied using both simulated and ex- 
perimental data. Numeric simulation was imple- 
mented to investigate the effects o f  different factors 
o f  the models. The potential o f  these techniques for 
the kinetic simultaneous determination of  mixtures 
o f  drugs was evaluated by using the coupling reac- 
tion o f  diazotized sulfanilamide with the o-, m- and 
p-aminobenaoic acids. Binary mixtures of  these com- 
pounds with different ratios of  the rate constants, and 
various degrees of  ~he spectral overlap of  the colored 
products were resolved. The advantages and limita- 
tions of  each metho¢~ were discussed from the view- 
point o f  practical application. 

where Ai ,  j is the absorbance of  the mixtme at the 
wavelength A i (i = 1,...,I) and the time t |  (j ~ l,...,J), 
SLI is the molar absorptivity o f  the Pl product at the 
A~ wavelength, c I is the initial concentration o f  C I 
(1 = 1 ..... L), k I is the corresponding tale conatar~ 
and B is the hackgrouad abstffbance which is as- 
sumed to be conslanl. Thus, Eq. 2 contains the 
complete t ime-spectral  kinetic information of  the 
mixture. Next, the way the different a~or i thms have 
been implemented to evaluate the initial concentra- 
tions is briefly explained. 

2.3. Powell algorithm 

2, Theoret ical  

2.1. Nomenclature 

Lowercase bold character's are used for column 
vectors, uppercase bold char~cters for two-way ma- 
trices, and underlined italic uppercase bold charac- 
ters for three-way matrices. The transpose of  a ma- 
trix or a vector is represented by the superscript T. 
Unless otherwise stated, both lowercase and upper- 
case plain characters are used for scalars, lowercase 
and uppercase plain characters are also used as run- 
ning indices and to indicate the number o f  dimen- 
sions of  the vectors or matrices, respectively. 

2.2. Kinetic model 

Consider a system of  L active subslrates, reacting 
with a common reagent+ R, to form L similar but not 
identical products, P,, following the pseudo-first or- 
der reactions: 

C,+R-,P, (1) 
where C t denotes the i-th component and P~ is the 
corresponding product, We will assume that only the 
proc Jets absorb within the monitored wavelength 
region, and that the absorbances are additive and 
follow the Lambert-Beer law. If the spectral scan in 
the whole wavelength range at each time point can 
be regarded as instantaneous, then: 

Ai, j ~ ~Si,,ct{1 - - e x p ( - - k l t j )  } + B (2)  

The Powell algorithm was implemented following 
the indications giving by Rao [34]. The one-dimen- 
sional searching was performed with the quadratic 
imerpolation method. Initial guesses o f  the parame- 
ters to he estimated together with the initial .¢~arch- 
ing directions and the step size to be used were 
provided. The coordinate axes were used as the 
initial directions. The parameters to be estimated 
were the concentrations o f  the analytes, the rate 
constants and the background absorbance. 

2,4. Linear and extended Kalman filter 

The equations o f  the Kalman Tilter algorithm are 
listed in Table 1, and a brief explanation with em- 
phasis on the way the mu]tichanncl computation was 
implemented, is given next. 

The Kalman filter algorithm is based on two 
equations, one is the system dynamic equation (Eq. 
3) and the other one is the measurement model 
equation (Eq. 4). In the linear filter, the system state 
vector x(10 consists o f  the initial concentrations o f  
the analytes, and sometimes the hackgmund ab- 
sorbance is also included, in the extended fil~er, the 
rate constants o f  the reactions have also been in- 
cluded as state variables. If the rate constants are 
known accurately, only the concenlrations o f  the 
analytes should be estimated, then Eq. 2 will be 
linear with respect to the state variables. On the other 
hand, if  the rate constants ate nat so certain, and they 
should be regarded as state variables to he estimated 
from the measurements, then Eq. 2 will be nonlinear 
with respect to the state variables. In most applica- 
tions of  the extended Kalman filter and also in this 
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Table 1 
ECluatio~ of the Kalman filler algorithm 

S~st~m dynamic equation 
Mgasttrgm~lt modet equation 
multiple ¢lumnd linear: 
single channel linear: 
mull~oJe ch~tnnel nonlinear: 
single eha~nel mmlinear: 
Stale estimate extrapolation 
Enox covariance extrapolation 
Sta¢ eslimate update 
multiple channel: 
single channel: 
~'tor covarianc¢ update 
multiple channel: 
~ngle channel: 
Kalman gain 
multiple channel: 
single channel: 
Innovation 
multiple channel linear: 
single channel linear: 
multiple channel nonlinear: 
single channel nonlinear: 

x(k) ~ F(k,k - t3x(k - t) + w(k) 

dk) = H't(k)a(10 + v(k) 
z~k) ffi hV(kh(k) + v(k) 
z(k) ~ ~(x(k))v(k) 
z(k) = ~x(k) )  + v(k) 
x(k/k - 1) ~ x(k -- l./k -- 1) 
P(k/k - 1) - l~k - i / k  -- 1) 

z(k/k) ~ x(k/k - t )  + K(k)g(k) 
x(k/~) ffi x(Wk-  t) + k(k~k) 

P ( k / k )  = [! -- K(k)llr(k)li~k/k - I) 
P(k /k)  - [I - k(kYaV(k)lF[k/k - 1) 

g(k) ~ P(k/k -- l)n(k)[K'r(k)P(t/k -- l)H(k) + R(k)]- t 
k(k) ~ P ( k / k  - t ~ k X h r ( k ) P ( k / k  - l )h(k)  + R(k) ] -  ' 

g(k) = z(k) - Hr(k)x(k/k - 1) 
g(k) ffi z(k) -- h'r(khm(k/k -- 1) 
~k) ffi z(k) -- FOi(k)) 
~k) - z(k) - f(~k)) 

(3) 

(4a) 
(4b) 
(~)  
(4d) 
(5) 
(6) 

(Ta) 
(Tb} 

(Sa) 

(sb) 

(ga) 
(gb) 

(10a) 
(lOb) 
(10c) 
(]Od) 

work, the rate constants are treated as time-invatiant, 
so the state transition matrix F is ~n identity matrix 
as that in the linear filter. In the exgended Kalman 
filter, if the rate constants are assumed to be time-de- 
pendent, then a state transition matrix describing 
such dependency is required [8,17,18]. I f  the rate 
constants are adjusted from time to time in the 
filtering process, then more inaccuracy in the values 
of  the rate constants may be t~E'rated. The state error 
vector w(k) terms were usually taken as zeros since 
most of  the dynamic models used in analytical chem- 
istry are deterministic. "rite matrix H(k) (or vector 
h(k)) in Eq. 4a (or in Eq. 4b) is the linear measure- 
ment function matrix (or vector), while in Eq. 4c and 
4d it denotes the nonlinear measurement function. 

Both the linear and extended Kalman filter share 
the same presentation of  the algorithm (Eqs. 5 to 10), 
but when the extended filter is adopted, the measure- 
ment function H (or b)  in the recursive algorithm 
should be calculated from the nonlinear measure- 
ment model of  Eq. 4c (or Eq. 4d) by using the 
Taylor 's  series expansion. This is applied to the 
c~Lurrent estimate of  ~ e  state variables with the trun- 
cation after the linear term. When multiple wave- 

length spectral-kinetic data are used in the filter, the 
inversion operation in the computation of  the Kalman 
gain is required. The results of  the Kalman f'flter 
depend on the initial estimates of  the state variables, 
as it also occurs with the Powell algorithm. Addi- 
tionally, the Kalman filter results rely on the initial 
guesses for the variance of  the corresponding esti- 
mate values, and on the variance of  the measurement 
noise. 

2.5. P L S  

Implementation of  two-way PLS involves to build 
up a calibration model based on the so-called calibra- 
tion data matrix, say X, obtained by recording the 
absorbance of  N mixtures of  known composition at I 
different wavelengths. The PLS model for matrix 
form data is: 

X ffi Et jp~ + E ffi TIP x + E (11) 

Y ffi E u j q  T + F ffi UQ T "l- F 

U ~- TB.4- H 
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and the prediction equation for Y is: 

Y = TBQ T (12) 

where T = (tt,...,t a} is the score matrix, and P = {Pl, 
.... pj} is the loading matrix for X, and where U and 
Q for Y have the same meaning as T and P for X. 
The subscript J represents the number of principal 
components retained in the model. 

In a kinetic determination, when a diode array 
detector is used to record the spectra of the reacting 
mixtures, the data obtained for the calibration mix- 
tures constructs a three-way data array. In this case, 
Eq. 2 can he extended to: 

A.., . j  = ~Si.,Cn.,{1 - e x p ( - k t t i )  ) + B (13a) 

= ESI.IC,.tKj. I + B 

that in matrlx-tensor form is: 

A ~ ~s,  ® c, ~ k,  (13b) 

where A is a N x I X J three way response data array 
and A ~ ,  i is its typical element, c I is the vector of 
the concentration of the l-th analyte, s t is the molar 
absorptivity vector of the PI product and k t is a 
vector containing the kinetic information for the l-th 
colnponent aod whose generic element is { 1 -  
exp(--kl t j )  }, The symbol @ represents the tensor 
p~luct [29]. 

The generalization of PLS to X and _Y three-way 
data arrays has been described by Wold et al. [29]. 
The three way PLS leads to the following model: 

X -  T . ® p T - F E  (14) 

r~  u.®~~+_~ 
U ~ T B + H  

To estimate the parameters of the three way model, 
Wold et al. [29] suggested to unfold the tKree way 
data array in the direction which leaves the first 
mode intact, which in our case is the concentration 
mode. Thus, the model parameters can be estimated 
on the basis of the unfold data matrices. 

The NIPALS algorithm [35] is used to decompose 
the date array, and cross validation (leave-one-out 
procedure) is adopted to determine the number of 
latent variables to be retained in the calibration 
model. 

3. Experimental 

3.1. Apparatus 

Kinetic measuremenls were done in a ElewlcZZ= 
Packard HP 8452A photodinde array 
tometer provided with a l-cm quav~ cell. ~ pH 
va lu~  were adjusted with a Crison MicmPH 2001 
pH-mcter. The spectrophutometer and date transfer 
were controlled by an IBM 486 cmnpatib~ micgo- 
computer, and calculations were atso conducted on a 
486 type computer. All the computation Wogg-an~ 
were written in MATLAB (Math Weqrk-..~, Shet'oom, 
MA). 

3.2. Reagents, solutions and procedures 

Analytical reagent grade o-, m- and p-amino 
benzoic acids (AB.~, Me~k, Darmstadt, Gernmay), 
sodium dodecyl sulphate (SDS, Fhtka, Bachs, 
Switzerland), sulfanilamide (Signm, St. Louis, Me) ,  
. ~ f ~ n i c  acid (Fiuka), sodium nitrite (Fiuka), and 
citric acid monohydrute (Pameac, Barcekma, Spain) 
were used. Distilled demincraiized water (BamsW, nd, 
Sybron, Taunton, MA) was used throughout. All 
other reagents were analytical grade. The series of 
pH buffers of  0.25 reel I - t  citt, ic acid were Weim, ad 
by adjusting the pH putentlometrically with a sodium 
hydroxide solution. Stock solutions of o-, m- and 
p-ABA were prepared by solving 17.5, 17.5 and 18.5 
tug, respectively, in 1 ml ethanol and then diluting 
with water to 50 ml. A 4 x  10 -2 mot I ' j  sulfanil- 
amide stock solution was prepared in 0.3 me! I - I  
HCI. A 0.2 reel 1 -~ NaNO2, 0.5 mol 1 - t  sulfamic 
acid and 20% SDS solutions were made with water. 
To prepare the 1 X 10 -2 reel ! -~ diazonium ion 
solution, 12.5 m! of the s . f f a n ~  solutieq~ was 
inlroduced into a 50 mi volua~tric flask, 15 ml 
NaNO 2 WaS added, the ruixtttre waS al[ov,'ed to 
for 10 rain, 15 ml sutfamic acid was added to destroy 
the excess nitrite, and a_~er 15 rain the volume was 
completed up to the mark with water. The diaztmium 
ion solution was renewed daily. 

Mixtures were made by introducing the adequate 
volura~.~ o f  the ABA stock solutions, 20 ml buffer 
and 2.5 mi 20% SDS into a 25 ml volumetric thsk,  
and adding water up to the mark. A 2.25 mi vohtme 
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o f  the mix ture  w a s  t ransferred into a d ry  l - c m  quar tz  
cell ,  and  then 0.25 ml  d i azon ium ion solution wa s  
injected into the cell  wi th  a 50 0  p,l regulab le  piston 
pipette,  i m m e d i a t e l y  af ter  p ress ing  the start  but ton to 

acqui re  the data,  Mix ing  w a s  done  by  bubb l ing  the 
solut ion in the cell four  t imes  wi th  the piston pipette.  
T h e  data  col lec t ion w a s  de layed  10 s thus to avo id  
the m i x i n g  per iod  o f  the solution.  T h e  da ta  w e r e  
acqu i red  wi th in  the 1 0 - 9 1 0  s range  wi th  30  s inter- 

va ls  be tween  the success ive  w a v e l e n g t h  scans.  T h e  
spectra  were  r eco rded  wi th in  a g iv en  w a v e l e n g t h  

range  (the spectral  resolut ion o f  the H P 8 4 5 2 A  spec-  
t ropho tomete r  is 2 a m ) ,  T h e  b lank w a s  p repared  in 

the absence  o f  the A B A s  and m e a s u r e d  in the s a m e  
way .  The  b lank  absorbance  w a s  a l w a y s  subs t rac ted  
f r o m  the s a m p l e  absorbance  before  the da ta  process-  
ing, The  first t ime  point  w a s  r e m o v e d ,  thus a total o f  
30 t ime  points  we re  used  in the data  process ing .  

Table 2 
Synthetic data sets for the investigation of the effect of the number of wavelengths 

S for both species: 
Width of peaks: 
Position of peaks: 
Wavelength range: 
Number of wavelength points: 
Rate constants: 
Time range: 
Number of time points: 
Standard devialion of noise: 
Background absorbance: 

Datasets 6k(%) ~ ~t(s) b 

2000 molt ~ 
15 nm 
565 and 385 nm for species l and 2, respectively 
550 to 600 nm with I nm interval 
5l (from 1 to 51 were u~d) 
5 X 10 -3 gqd 3.5 x 10- 3 s-  i for species 1 and 2, respectively 
10 to 910 s with 30 s interval 
31 (all the points were always used) 
0A% of the maximum absorbanee value 
0.005 

Mixture composition( x 10- 4 moLl - t ) 

A 0.0 0 No. Species 1 Species 2 

B 1,0 0 l 1.0 1.0 
C 5.0 0 2 1.0 3.0 
D 10.0 O 3 1.0 5.0 

4 3.0 1.0 
1 0.0 0 5 3.0 3.0 
2 0.0 4 6 3.0 5.0 
3 L0 v, 7 5.0 1.0 
4 5.0 4. 8 5.0 3.0 
5 10.0 4 9 5.0 5.0 
6 20.0 4 10 2.0 2.0 
7 30,0 4 ! l 2.0 4,0 
8 40,0 4 12 4.0 2,0 
9 50,0 4 13 4.0 4.0 

Initial values of the parametors for the Kalman filter and Powell algorithm ~ 

Linear Kalman filter: x o ~ (0.00 0.00 0.00) R = 10 -~ 0 .2 =5  x 10 -'t 
Extended Kalman filter: s 0 ~ (0.00 0.00 0.00.5 0.0035 0,00) R = i 0  "~ 0 . 2 = 5 x  10-4 
Powell algorithm: xn ~ (0.00 0.(]4) 0,005 0,0035 0.00) 

Stepsize ~(10 -4 t0 -4 10J~ 10-~, l0 -3) 

PLS calibration samples: 

Mixture Nos, 1, 3, 5, 7 and0 

Normally dislmbuted random numbers mukiplied by 3k (a pe~entase of the nominal v~lue of k) were added to the nominal values ef the 
gale Coa$taflts. 
b The liming imprecision for each mixture in 1he data set is an evenly distributed random number within 0 and I multiplied by at. 
e Xo is the vector of the initial state variables. The first two elements are the concentrations of both species, and the last one is the 
t~tckground ab~rbance, For the extended Kalman filter and Fowell algorithm, the other two elements m~ the Fate cml~lanlls. R is, Ihe 
variance of the abserbanCe noise, and o -2 is the variance of the estimates. 



K-L. Xie et al. / Analy,,ea Chimica Aeta 321 0996) 75-9.~ 81 

3.3. Generat ion  o f  sire:dated da ta  

T h e  s p e c t r a  o f  m i x t u r e s  o f  t w o  c o m p o n e n t s  w e r e  
s i m u l a t e d  by  u s i n g  g a u s s i a n  s h a p e d  peaks .  T h e  p e a k  
p o s i t i o n s  o f  the  r ,  v o  c o m p o n e n t s  w e r e  f ixed  a t  5 6 5  
n m  a n d  5 8 5  nm,  r e spec t i ve ly ,  a n d  the  w i d t h  ( s t an -  
da rd  dev i a t i on  o f  the  p e a k s )  w a s  f ixed  to  15 rim, o r  
as  o t h e r w i s e  spec i f i ed .  Da t a  w e r e  g e n e r a t e d  w i t h i n  
the 5 5 0 - 6 0 0  n m  r a n g e  w i th  1 n m  in te rva l  b e t w e e n  

them.  T h e  n o m i n a l  v a l u e s  o f  the  f i r s t  o r d e r  r a t e  
c o n s t a n t s  u s e d  w e r e  5 × 1 0  -~ a n d  3 .5  × l 0  - 3  s - 1  
a n d  they  w e r e  a l l o w e d  to  c h a n g e  a f in i te  a m o u n t  
a l o n g  the  t ime  sca le  in a r a n d o m  w a y .  T h e  a m o u n t  o f  
v a r i a t i o n  w a s  a n  a rb i t r a ry  va lue ,  /$k, mu l t i p l i ed  b y  a 
r a n d o m  n u m b e r  w h i c h  f o l l o w e d  a n o r m a l  d i s t r ibu -  

t ion,  T h u s ,  the  ra te  c o n s t a n t  c h a n g e d  a l o n g  the  ki-  

ne t i c  p r o c e s s  f o r  the  s a m e  m i x t u r e  in  a r a n d o m  
m a n n e r .  T h e  t ime  r a n g e  m o n i t o r e d  w a s  f r o m  10 t o  
9 1 0  s in  3 0  s in te rva ls .  In o r d e r  t o  s i m u l a t e  the  
s i tua t ion  in w h i c h  the  s tar t  o f  the  d a t a  a c q u i s i t i o n  
pe r iod  w o u l d  no t  a c c u r a t e l y  c o i n c i d e  w i t h  the  s t a r t  
o f  the r eac t i on ,  a t i m i n g  i m p r e c i s i o n  w a s  i n t r o d u c e d .  
F o r  th is  p u r p o s e ,  a n  a rb i t r a ry  t i m e  q u a n t i t y ,  ~ t  ( i n  
s econds ) ,  w a s  mu l t i p l i ed  b y  a n  e v e n l y  d i s t r i bu t ed  
r a n d o m  n u m b e r  w i t h i n  the 0 - 1  r a n g e ,  a n d  a d d e d  to  
the t ime  v a l u e s  o f  the  mix tu re s .  In th i s  w a y ,  d i f f e r en t  
m i x t u r e s  o f  the  s a m e  d a t a  se t  h a d  a d i f f e r en t  t i m e  
shif t .  F o r  e a c h  d a t a  set ,  a to ta l  o f  13 m i x t u r e s  w e n  
s i r au la t ed .  T h e  p e r t u r b e d  ra te  cons t an l s ,  the  t i m i n g  
i m p r e c i s i o n  t o g e t h e r  w i th  the  s t a n d a r d  s p e c t r a  a n d  
the  c o m p o s i t i o n  o f  t he  m i x t u r e s  w e r e  u sed  t o  g e n e r -  
ah:  the  r e s p o n s e  d a t a  a c c o r d i n g  to  the  k ine t i c  m o d e l  

Table 3 
Synthetic data sets for the investigation of the effect of the ratio of the kinetic rote con_slants and the spectral overlap ~ 

S for both species: 
Width of peaks: 
Position of peaks: 
Wavelength range: 
Number of wavelength points: 
Rate constants: 
Time range: 
Number of lilac poinls: 
Standard deviation of noise: 
Background absorbanc¢: 
Variation of rate constants: 
Timing tmpgeetsion t 6t): 
Composition of mixtures: 

2000 mol-  t i 
l0 nm 
varied 
550 to 600 nm with, Inm interval 
51 ( I 1 points from 570 to 580 nm were used) 
3.5 X I0 --1 s - t  for species 2 
In to 910 s with 30 s interval 
3i (all Ihe points wcvt always used) 
0.1% of maximum ab~orbance value 
0.005 
10% 
2 s  
the seine as in Table 2 

The degree of spectral overlapping 

Experiment No. l 2 3 4 5 6 
Peak of species t 565 567 569 571 5'73 575 
Peak of species 2 585 583 581 5"/9 577 575 
Degree of overlap 2.0 1.6 1.2 0.8 0.4 0.0 

The difference of kinetic t~le constants 

Experiment No. ! 2 3 4 5 6 
Rate constant of species I(k, ) 5.00 4.75 4.5{I 4,25 4.00 3.75 
Ratio of rate constants (k I / k ,  ) !.43 1.36 1.29 1.21 _ _ L  14 1.07 
Initial values of the parameters for the K~man filter and Powell atgorithm 

7 
3,50 
l.tlO 

Linear Kalman filler: 
Extended Kalman filler: 
Powell algorithm: 

go = (0.00 0.0G O.GO~ R ~ In-* 
Xe ~ (O.0tl 0.00 k I k2 0.00) R = 102 
x a ~ (O.EO 0.00 k t k 2 0.00) 
Step size = (10  -~ 10 -4 10 -b IO - s  1O -3) 

Calibration sempks of PLS: 

Mixtures biD. I, 3, 5, 7 and 9 

o -2 = 5 x  1 0 - *  
o -2 ~ S X  10-* 

a The meaning of the symbols is given in Table 2. 
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of  Eq.  13. A cons tan t  w a s  added as  backgrouncl  
absorbance  and ze ro -mean  r andom n u m b e r s  wi th  .s 
g a u s s i a n  d i s t r ibu t ion  w e r e  added to the absorban~:¢ 
v a l u e s  to s imu la t e  the expe r imen t a l  noise.  The  start,, 
( lard ~,~','iation o f  the added  noise  was  a cer ta in  
pe rcen tage  o f  the  m a x i m u m  abso rbance  o f  each  mix -  
lure.  

Here ,  w e  did not  try to d i s t ingu i sh  i f  the va r i a t ion  
o f  a ra te  cons tan t  is p roduced  wi th in - run  or  b e t w e e n -  
run, bu t  the rate  cons tan ts  changed  a l w a y s  f rom t ime  
to  t ime  and f rom mix tu r e  to mix tu re ,  thus  to s imula te  
the per tu rba t ions  in t roduced  in the real e x p e r i m e n t  
by  sma l l  va r i a t i ons  o f  the expe r imen ta l  and  instru.  
men ta l  cond i t ions  du r ing  data  col lec t ion .  For  each 
data  set,  a 1 3 x 5 1 x 3 1  three w a y  data  array o f  
s imula t ed  da ta  cons i s t i ng  o f  concent ra t ion ,  w a v e -  
length  m o d e s  and t ime  w a s  obta ined.  The  pa ramete r s  
and  the compos i t i on  o f  the m i x t u r e s  used  in the 
s imu la t i on  are  l is ted in Tab le  2. These  da ta  sets  were  
used  to inves t iga te  the effect  o f  the n u m b e r  of  
w a v e l e n g t h s  on  the pe r fo rmance  o f  the d i f ferent  
a lgor i thms .  

In  order  to  s tudy  the ef fec ts  o f  the d i f fe rence  of  
the k ine t i c  rate cons tan t s  and  the spect ra l  over lap ,  
o ther  syn the t i c  da ta  se ts  were  used. Di f fe ren t  rate 
cons tan t  ra t ios  w e r e  ob ta ined  by  dec reas ing  the va lue  

o f  the rate  cons tant  o f  spec i e s  Z w h i l e  ma in t a in ing  a 
f ixed  rate cons tan t  for spec ies  2. A total  o f  7 differ-  
ent  rate cons tan t  ra t ios  were  cons ide red  wi th  a m a x i -  
m u m  of  1.43 (5 X 1 0 - 9 / 3 . 5  × 10 -3 )  and a min i -  
m u m  o f  1 (3.5 × 1 0 - 3 / 3 . 5  x 10 -3 ) .  The  spec t ra l  
over lap  w a s  eva lua ted  as  the rat io  of  the d i s tance  
be tween  the two  peaks  and the w i d t h  o f  the peaks .  
The  degree  o f  spect ra l  over lap  w a s  changed  by  
shor ten ing  the d i s tance  be tween  the peaks  w h i l e  
ma in t a in ing  a cons tan t  peak  width .  A total  o f  6 
s i tua t ions  w e r e  cons ide red  in  w h i c h  the m a x i m u m  
rat io w a s  2.0 and the m i n i m u m  one  w a s  0. There-  
fore, a total  o f  ,~2 data  sets  w i th  var ied  rate differ-  
ences  and  spec t ra l  ove r l aps  w e r e  synthes ized .  In 
each data  set  the 13 mix tu re s  l i s ted  in  Tab le  2 were  
used.  A g a i n ,  each  da ta  set  g a v e  a 13 x 3 ]  x 31 three 
w a y  data array.  The  pa rame te r s  used  in this  s imu la -  
t ion expe r imen t  a re  p resen ted  in  Table  3. 

A s  the Powe l l  a l go r i t hm for non l inea r  regress ion  
and the K a l m a n  f i l ter  need  in i t ia l  g u e s s e s  of  the 
pa rame te r s  to be  es t imated ,  and  the K a l m a n  f i l te r  
a lso needs  g u e s s e s  o f  the var iance  of  these ini t ia l  
e s t ima tes  and  the va r i ance  o f  the expe r imen ta l  noise ,  
ano ther  re la t ive ly  "c lean '  data  set  w i thou t  per turba-  
t ion o f  the rate cons tan t s  and t i m i n g  imprec i s ion  w a s  
syn thes i s  to inves t iga te  the ef fec ts  o f  the ini t ia l  

Table 4 
Synthetic data set for the investigation of the effect of the initial estimates of th~ rate eonstams ~ 

S for both species: 
Width of p~aks: 
Wavelength range: 
Number of wavelength points: 
Number of wavelengths used: 
P~.te constants: 
Time range: 
Number of time points: 
Ite~ ,-tlestants used in evaluation: 
Standard .~cviation of noise: 
Background aly~rbance: 
Variation of rate constants: 
Timing imprecision ( 8/): 
Composition of mixture: 

2000 mot- 1 I 

15 nm 
550 to 600 am with l nm interval 
51 
I (575 nm), 5 (573-577 nm) and 21 (565-585 nm) 
5.0 x In -3 and 3.5 x I0-  3 s -  i for species t and 2, respectively 
10 to 9 |0  s with tO s imerval 
91 ('all the poinls were always used) 
(1.(30 ~E 0.25) X k 
0.5% of maximum ahsorbance value 
0.005 
0% 
0 s  
[.000 x ]0 -4 mot I-  : for both species 

Initial values of the parameters for the Kalman filler ~nd Powell algoxithm 

Linear Kalman filler: x o = (0,00 O,O0 0,0D) R = |0  -~ ~2 = 5 x 10- ,t 
Extended Kalman fi)ter: xo = [0 0 (1 + 0,25) x k~ (1 + 0.25) x k2 0] R = 10- 2 o ,2 = 5 × ]0- 4 
Powell atgo~thm: x o = [0 0 (1 + 0,25) × k z (! + 0,25) ×/~: ol 

Step size =(10 -4 10 -4 l0 -6 l0 -6 10 - 3 )  

a The meaning of the symbols is given in Table 2. 
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guesses.  The  parameters used to synthesize the data 
arc listed in Table 4, where only one mixture was 
generated and the sampl ing interval for t ime was 
shortened from 30 s to I0  s to guarantee the conver- 
gence o f  the Kalman filter. This data set was  treated 
by changing the initial rate constants up to a 4-25% 
o f  the nominal  values in 2.5% intervals. A total o f  
441 different combinat ions o f  initial rate constants  
(21 × 21) were evaluated with three different num-  
ber o f  wavelengths  (i.e., 1, 5 and 21 wavelengths),  

3.4. Data process ing 

For the linear and extended Kalman filters and the 
Powell algorithm, the values o f  the initial est imates 
o f  the concentration were always set to zero in order 
to avoid bias. The initial est imates o f  the rate con- 
stants were always taken as the nominal  va lues  used 
in the simulation,  except in the simulation experi- 
ment. addressed to s tudy the effect o f  the initial 
values  o f  the rate constants.  Other initial values used 
are given in Tables  2 -4 .  

The  average absolute relative error used for the 
evaluation o f  the results was: 

0ol - ~nt × 100 

(15) 

where ~,~ is the estimate for the true concentration o f  
the l-th component  in the n-th mixture, Cnl, and N is 
the number  of  mixtures,  

PLS is an indirect calibration procedure that makes  
use  of  a set o f  calibration mixtures instead o f  us ing  
the sta=,dard spectra and the rate constants  o f  the 
components  in the calibration process. Therefore, the 
comparison between PLS and the other algori thms 
will not be straightforward. We  have always used the 
same five mixtures  in each data set as the calibration 
mixtures (No. 1, 3, 5, 7 and 9 in Table 2), to build 
up the calibration model, and to predict the concen- 
tration o f  the analytes  in the other eight mixtures. 
The  average error defined in Eq. 15 and obtained 
with PLS over these eight mixtures was compared to 
the error obtained also with Eq. I5, but us ing the 
thirteen mixtures with the other three methods.  

4. Results and discussion 

4.1. Numeric simulation 

4.1.1. Influence o f  the number o f  waueiengths at  
seL, eral 8 t  and 8k  ualues 

First, s imulation studies were performed for the 
kinetic determination of  mixtures in which the prod- 
ucts were assumed to absorb with a given degree o f  
spectral overlap (i.e., 1.33), and also with a fixed 
ratio o f  the first-order rate constanls (i.e., 1.43), and 
the number  o f  wavelengths was varied. Two groups 
of  data sets  were generated (Table 2). in one group, 
the variation o f  the imprecision o f  the rate constants  
(Bk)  was  in the range o f  0% to 10% for four data 
sets, but no t iming imprecision was assumed therein. 
With another group of  data sets, a more serious 
variation o f  the rate constants  was  performed and a 
max i mum random timing imprecision o f  8¢==4 s 
was considered in the data synthesis.  The number  o f  
wavelengths incorporated in the data processing was 
increased from only a single wavelength to the whole 
spectrum (51 wavelength points) with an increment 
of  2 at a time. However,  for the Powell algorithm, a 
larger increment of  the number  of  selected wave-  
lengths was  used, thus m reduce the very large 
overall computation time. The  wavelength located in 
the centre o f  the spectrum (the 26th wavelength 
point, 575 nm)  was used for the single wavelength 
computation, and it was  also fixed as the centre o f  
the wavelength range when  more wavelengths were 
adopted. The  AARE values against the number  o f  
wavelengths and for species  1 are shown in Fig. 1. 
The corresponding results for species 2 were entirely 
similar and are nut shown. Owing to the relatively 
large errors given by the Powell algorithm, different 
AARE scales were used in the presentation o f  the 
results (see Fig. 1). 

From Fig. 1, it can be seen that if only a single 
wavelength was  used, it was  difficult to obtain ac- 
ceptaU]e est imates for the concentrations. For the 
linear KaIman filter and PLS, the acceptable results 
seemed to be obtained for the data sets with varia- 
tions o f  the rate constants  less than 5% in the single 
wavelength situation. It is beyond expectation that 
the extended Kalman filter gave worse results than 
its linear counterpart with some of  the data sets. 
Even for the 'c leanest '  data set (data set A and data 



!". -L. Xie et aL / Analygca Chimica Acla 321 f 1996~ 7~3-95 85 

set ~), it could not provide accurate estimates. The 
possible reason is that we tried to use constant initial 
guesses for the covariance (variance) o f  the state 
estimates and measurement noise, but different mix- 
turns in the same simulation conditions were affected 
in a slightly different way by these initial guesses. In 
other words, the filter parameters may not be optimal 
in some cases. However from the viewpoint o f  the 
practical application, we still adopted fixed initial 
8ue;sses for the computation o f  all the mixtures in the 
data sets. In addition and in comparison to the other 
algorithms, it seemed much more difficult for the 
Powell algorithm to provide acceptable results when 
only a single or a few wavelengths were used in the 
computation. 

In all cases, the estimates converged quickly to a 
certain error level as the number of  wavelengths 
used in the computation increased. Thus, the utiliza- 
tion o f  multiple wavelengths in the evaluation o f  the 
results is obviously superior to the single wavelength 
situation for all the methods. Of  course, this superi- 
ority is obtained at the expense o f  more data and 
more time for computation which is not a problem 
for the off-line treatment of  the kinetic data. To 
reach a given value of  the error, the number o f  
wavelengths required was more or less the same both 
for the linear and extended Kalman filter, but the 
Powell algorithm needed more wavelengths than the 
Kalman filter. A large number o f  wavelengths was 
also required by PLS, which is reasonable since no 
model is assumed in FLS and the calibration is 
performed from the data by themselves. Comparing 
the data sets with a rate constant variation smaller 
than 10%, it can be obser~-.d in Fig. 1 that the 
introduction of  a timing impre.  :~ion did not alter the 
results significantly, ~.~tich hints that the major fa~or 
affecting the precision was the variation o f  the rate 
constants rather than the timing imprecision. From 
the lower part o f  Fig. 1, it can also be seen that, if  
sufficient wavelengths were used, higher than 30% 
vat,alien in the rate constants could be tolerated, 
however, the number o f  the sufficient wavelengths 
were different for the different procedures. In gen- 
e~l ,  more wavelengths were needed with PLS than 
with the other algorithms. 

It seems that the linear Kalman filter can tolerate 
some variation of  the rate constants when many 
wavelengths are used. From Fig. 1, one cannot see 

significant differences between the results o f  the 
linear end extet~ded Kalman filtet~. One 
reason is the zero n g a n  feature of  the noise used in 
the simulation, and the signal averaging effect result- 
ing from the many wavelengths incoqxnated. When 
only a single wavelength was used, the spectral 
difference was not utilized and the error would criti- 
cally depend on the error o f  the rate c ~ a m s .  
Instead, in the multiple wavelength situation, the 
influence of  the error o f  the rate constants 
as the number o f  wave|engths used increased. A 
larger number of  wavelengths means to add mine 
information to the data set, and therefore, to improve 
the quality of  the data set. Another intrins~ factor 
may probably be that there is no si~nifimmt differ- 
ence between the l inear and extended Kalnum filter 
used, because in both cases, the rate constants which 
can be adjusted pointwise in the extended Kaiman 
filter were assumed to he time-invariant. However, 
our experience and that o f  other researchers [19] has 
proved that the estimated aeemacy for the concentra- 
tions and for the rate constants in the extended 
Kalman filter are not always the same, but scmse- 
times, the concentrations can be estimated much 
more accurately than the rate constants, In such a 
case, the variation o f  the rate constants may affect 
the linear and extended Kalman filter in a similar 
way. The next point that should be sticked out is that 
the extended Kalman filter was largely affected by 
the initlal guesses of  the variance o f  the state vari- 
ables and o f  the measurement noise, which should be 
chosen (mrefully for the sy~em investigated, and that 
cougd cause problems in the practical applit.'ation. 

The performance o f  the Powell algorithm de- 
serves more attention. For the mixtures in the same 
data set, and when the same initi~I parameters were 
used, the Powell algorithm ves~j often s u c c e e d ~  in 
some cases and absolutely failed in others. There- 
fore, it is imperative to choose suitable initial values 
for each mixture in order to achieve good results, but 
th:  problem is the lack of  heuristic rules to do that. It 
should be pointed out that, qualitatively, the Powell 
algorithm needed much more computation time 
(about 50 times in average) than the other algo- 
rithms, and also there was no direct proportion be- 
tween the co~putation time and the number of  wave- 
lengths incorporated. 

Finally, the slightly slow convergence of  the re- 
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Fig. 2. The error (AAP~') as a function of the rate constants (from 1.00 to 1.43) and the spectraL overlap (from 2.00 to 0.00). Species 1 (A) 
and 2 (B) for the Powell algorithm, and species 1 for the linear (C) and extended (D) KaLman filters and for PLS (E), 
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suits o f  PLS to a low error level did not mean that 
PLS is inferior to the hard modell ing methods.  For 
the sake of  simplicity, only five mixtures were used 
to construct the calibration model for all the cases. 
When  'unc lean '  data sets are dealt with, larger cali- 
bration sets should be used, and better results are to 
be expected. 

4. I .Z  Influence o f  the kinetic rate constant ratio and 
spectral ouerlap 

The degree o f  spectral overlap and the ratio o f  the 
rate constants  were varied. A total o f  42 data sets  
were generated according (o the simulation condi-  
tions described in the Experimental section and that 
are listed in Table 3. The number  o f  wavelcngtlm 

~ . ~  ! ,~ t ,  

<I '\ 

.rio. ~ ~" ~<~- " ~  

Fig. 3. l~fluen~e or the ~ccur~cy of the tnRia| gu~,se~, of the rate constants. For lie Powell aNgorhhm (upper pro'I), linear K.alman ('m~Id~ 
part) and ©xI~nded Kalman tilter (lower part). From [eft to u~ghI., ~suRs obtained with I, 5 and 21 waveleng~.~ AIIlcndon slmu~ I~ paid to 
the changes of scale of lh© ~ axis. 
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used in the computat ion was  11, and the nominal  
values o f  the rate cons tams were used as the initial 
guesses  in the Powell algorithm and the Kalman 
filter. The AARE of  the est imated concentrations 
obtained us ing  the different algori thms are shown in 
Fig. 2 A - E .  For the convenience o f  the graphic pre- 
sentation, the AARE values were normalized to a 
m a x i m u m  o f  100%. As  expected, it is observed that 
the error increases as both the spectral overlap in- 
creases (its numerical  estimation decreases from 2.00 
to 0.00) and the ratio o f  the rate constants  decreases 
(from 1.43 to 1.00). The results were very good 
except with the Powell algorithm, and with those 
cases  where  both a serious spectral overlap and a 
very small  ratio o f  the rate constants  existed. Since 
the two components  showed very similar error be- 
haviour for all the algorithms, except for the Powell 
algorithm, only the resuhs  of  one component  are 
shown in Fig. 2 C - E .  It was  reasonable to have a 

similar error behaviour for both components ,  because 
their spectra have the same shape, and the rate 
constants  and the variations o f  concentrations in the 
mixtures  were also similar. The results w~th the 
Powell algorithm might not ret]ect the real situation, 
s ince the Powell algorithm was not so stable and 
very often missed the op t imum in this study. 

In Fig. 2 A - E ,  it is also observed that the accuracy 
o f  the est imates was aff,,,cted much  more by the 
spectral overlap than by the kinetic difference. In the 
extreme situation in which  the rate constants were 
identical, most  of  the methods  still supplied reliable 
results, so  long as there was a sufficiently large 
spectral difference. It should be considered that mix-  
tures with w r y  small  kinetic differences were used,  
and that the variation o f  the rate constant  ratio (from 
1.43 to 1.00) would only slightly change the shape of  
the kinetic curves, and therefore, it could not bring 

Table 5 
AARE values (species 1/species 2, in percentage) for the data set 
of Table 4. when the nominal values of k l and k 2 were provided 
as the initial guesses 

No. of Powe]l Linear Kalman Extended Katman 
wavelengths 

1 99/98 0.40/0.77 0.29/2.80 
5 5.0/6.5 0.61/0.24 1.7/0.67 

21 0.23/0.14 0.077/0.095 0.I7/0.39 

much  variation in the resultant kinetic-spectral  data. 
Relatively, the spectral variation derived from the 
change of  spectral overlap (from 2.0 to 0.0) was 
larger. Therefore, the results would be more sensitive 
to the spectral variation than to the kinetic differ- 
ence. These  results coincided with the results ob- 
tained by other authors [22,23]. 

4.1.3. In f luence  o f  the ini t ial  guesses  on the  nonl in-  
e ~r regress ion techniques  

~ne effects of  the initial est imates w©re also 
studied by us ing  simulated data, Usually,  no a priori 
knowledge about the concentrations of  the analytes 
in the mixtu-cs  is available, so  it would  be reason- 
able to set them to zero in order not to introduce 
bias. Initial est imates o f  the rate constants should be 
also provided to the Powell algori:hm and the ex- 
tended Kalman filter. With the linear Kalman filter, 
the value of  the rate constants  is also required to 
construct the measurement  function, in practice, ap- 
proximate values  o f  the rate constants  can be esti- 
mated. We are here interested in investigating the 
effect o f  the inaccuracy o f  the initial rate constants 
provided to these algorithms. A simulated data set in 
the conditions given in Table 4 was generated for 
this purpose. The initial taste constants provided to 
the algorithm were changed in the range of  + 2 5 %  
of  the nominal  values.  In each mixture, the concen- 
trations of  both components  were est imated us ing  1, 
5 and 21 wavelengths.  

For simplicity, the AARE values o f  only one 
compor¢.ut are shown in Fig. 3. Similar results were 
obtained for the other component.  The AARE values 
obtained with the nGminal values o f  k t and k 2 are 
shown in Table 5 and the AARE values  given with 
erroneous values of  the rate constants are presented 
in Fig. 3. The results of  Fig. 3, upper part, indicate 
that in the single wavelength situation the Powell 
algorithm converged without f inding the opt imum, 
With the same initial parameters, however,  the re- 
sults were improved when more wavelengths were 
adopted, al though in many  cases, the opt imum was  
still missed.  The  estimate errors decreased remark- 
ably as more wavelengths  were adopted for the 
Kalman f i l ter.  This was reasonable, since more mea- 
surement information was included in the computa-  
tion and used to improve the estimates. Owing to the 
possibiiity o f  adjusting erroneous initial rate con- 
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stants, it could be expected that the results given by 
the extended Kalman filter should be better than 
those given by the linear Kalman filter, however, the 
differences were small. Once again, the results shown 
in Fig. 3 stressed the advantage of the use of multi- 
ple wavelengths. 

When the initial values of k I and k 2 provided to 
the algorithms were modified, the linear and ex- 
tended Kalman filters give rise to narrow elongated 
valleys of the AARE value, which include the posi- 
tion of the k] and k2 nominal values (Fig, 3). This 
was attributed to the mutual cancellation of the 
influence of the systematic errors of the two con- 
stants. This suggests that at least in some cases the 
system has not the. necessary information to distin- 
guish between kl and k 2. Therefore, the system has 
not either the information required to adjust indepen- 
dently k t and k 2 to the nominal values. Conse- 
quently, it is not surprising that the extended Kalman 
filter had not the capability of improving the results 
given by the linear Kalman filter. 

The effects of varying the initial guesses of the 
estimates of the varianec of the s~atc variables, and 
of the measmcmcnt variance (required only by the 
Kalman fihcr) were also investigated. We have found 
that, qualitatively, it is the relative rather than the 
absolute magnitude of the state covariancc and the 
measurement variance that influence the csslmates. 
Also, they have more influence on the extended 
Katman filter than on the linear Kalman filter. Fog 
the linear Kaiman filter, when these values were 
varied in a relatively large range, they did not de- 
grade the results significantly, but that was not the 
case for the extended Kahnan filter. We also found 
that the initial guesses could be taken in a wider 
range as the number of wave:enghts used in the 
evaluation increased. However, ~'ince the choice of  
initial values depends on the system investigated, 
i.e., on the ratio of the rate constants and spectral 
overlap, relative concenlration of components and 
level of noise, the choice of optimal initial values is 
not a simple matter. 
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In the Powel] algorithm, another factor studied 
was the initial step size for the one dimensional  
searching. In the literature there is  no criterion o f  
how to define the searching step size when a new 
searching direction should be  used in the computa-  
tion cycling. Most  often, if the initial searching step 
size corresponding to the rate constants  was  too 
large, the algori thm diverged. W e  found that it is 
advisable to use  a relatively small  initial step for the 
directions referring to the rate constants,  s ince the 
initial values o f  the rate constants  might  be suffi-  
ciently acc~rate. 

The Powell  algorithm, indeed, did not  give any 
means  o f  detecting model  errors. However,  f rom our 
experience and that o f  others [19], the Ka lman  Falter 
algorithm cannot provide more advantage at this 
point. W e  have found that somet imes  the white noise 
characterized innovation sequence and the strongly 
smoothed state sequence might  correspond to both 
very  accurate and very absurd estimates. Some ex- 
amples  which  were extracted from the s tudy of  the 
effects o f  the initial rate constants  (data sets obtained 
in the condit ions of  Table 4) are g iven in Fig. 4. Fig. 
4 A  shows  a state sequence evolved with the linear 
filter, and Fig. 4B is the corresponding innovation 
sequence.  The number  o f  wavelengths  used for the 
evaluation was  1 and the initial rate constants  were 
the nominal  va lues  used in the data synthesis  (which 
refers to the central point in the left plot o f  Fig. 3, 
middle part). In this case, the concentrations were 
est imated accurately (0.996 × 10 -4  for species I and 
1.0077 × 1 0  - 4  for species 2). The  filter feature re- 
flected by Fig. 4 A  and B coincided with the fact that 
the est imates were highly accurate. However,  when  
erroneous initial rate constants  were used (3.75 × 
10 -3 and 2.625 × 10 -3 s -1 for species  1 and 2, 
respectively, which  corresponds to the bot tom comer  

point in the plots o f  Fig. 3), the inaceuracy o f  the 
est imates o f  the concentration (168% for species 1 
and - 173% for species 2) were not reflected by the 
innovation plot and state sequence plot (Fig. 4C and 
D). The innovation sequence in Fig. 4C was  also 
characterized by the white noise and the state se-  
quences  were alst~ smoothed.  Furthermore, all the 
final variances o f  the estima~-xl concemrat ions in 
these two situations were o f  about 10 - t2 ,  Therefore, 
it was  hard to say which  results should be accepted if  
we did not  have the concentrations in advance. 

The same occurred with the extended Ka lman  
filter. In the investigation o f  the initial guess  o f  the 
variance o f  experimental  noise, two extended filters 
were carried oat. In both cases,  the same initial 
guesses  were used,  but  in one o f  the filters the initial 
variance o f  the experimental  noise was  assumed to 
be 10 -2 ,  and in the other f'dter it was  given the value 
10 -4  . Random innovation sequences  were obtained, 
and in both cases,  the state sequences  were smooth,  
but  the accuracy o f  the est imates differed largely. 
The estimated concentrations and rate constants  for 
these two exper iments  are given in Table 6. It is 
deduced that the characteristics o f  the innovation and 
the values  o f  the error variance o f  the Ka lman  filter 
cannot be directly used as criteria to estimate the 
accuracy o f  the evaluated state variables [11], s ince 
these characteristics were related with an exact  
model.  

4.2. Treatment o f  e~perimenml data 

4.2.1. Optimization o f  the reaction conditions 
Since only the basic  form o f  the AIBAs (the 

non-ionic free amines)  are sufficiently activated to 
couple with diazonium ions, the reaction rate is 
largely affected by pH [36]. Thus,  at pH < 3.5, the 

Table b 
Effect of the initial guess of the absorbance variance, R, on the performance of the extended Kalman filter ~ 
R State variable c I c 2 k 1 k z 

( x  10 - 4  tool 1 - t )  (X |CI-3 $-I) 

- Nominal value 1.0000 1.0000 5.0000 3.5000 
10- 2 Estimated value 1.0029 1.0280 5.0042 3.4854 
t0-  4 Estimated value 1.7680 0.2889 4.4483 2.9515 

a Data set described in Table 4. The init ial guesses fo r  Lhe state variables were x o ffi (0.00 0.00 0.005 0.0035 0.(10). The ini t ia|  variance 
gues~ for the estimales was o -2 ~ 5 3< 10 -4. 
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Tabte 7 
Fint--ot~ler rate constants fo~r o-, m- anti p-ABA at different pH values in a 2% SDS medium 

S|d~trates Ame ~ (nm) pH k ± s t ( s -  t × 10- ~ ) * k ( s -  l × 10- ~) b 

m-ABA 360 3.90 &16 + 0.40 9.24. 
p-ABA 368 3.90 1.67 4" 0.11 1.45 
o-ABA 370 3.80 4.48 + 0,08 4.67 
m.ABA 360 3.80 7,14 4- 0,07 8.28 

a Obtained from three solmions with different substrate coftceatrationa by the Powell algoriqhm. 
b Mean valne refined by the extendcd Kalman filter. 
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Table 8 
Composition of  the binary mixtures 

Experiment No. m-ABA/p .ABA ( × 10 -5 tool I - t)Experimem No. o-ABA/m-ABA 
( × t O  - s  mol I - s )  

1 1,839 1.945 14 2.299 2.299 
2 3.219 1.945 15 2.299 3.679 
3 4.598 i.945 16 2.299 5.058 
4 1.839 3.403 17 3,679 2,299 
5 3.219 3.403 18 3,679 3.679 
6 4,598 3.403 19 3.679 5.058 

7 1,839 4.861 20 5.058 2.299 
8 3,219 4.861 21 5.058 3.679 
9 4,598 4.861 22 5.058 5.058 

10 2,759 3.889 23 3219  2.759 
11 3,679 2.917 24 4.139 4.599 
12 2.299 3.403 25 4,139 2.759 
13 3.219 2.431 26 3.219 4.599 

Initial values of t l~ parameters for the Kalman filter and Powell algorithm " 

Linear Kalman filter: x ,  -- (0.~) 0.00 0.O0) R = 10 -6 w 2 = 5 X 10 -'~ 
Extended Kalman filter: x o ~ (0.00 0.00 k I k 2 0,00) R = 102 o-2 ffi 5 × 10-* 
Powell algorithm: x o ~ (0.00 0.00 k I k 2 O.0D) 

Step size = (10  -4  10 . 4  10 -6  10 -6  j f i -3)  

CaY~ration samples for PLS 

Mixtures No. 1, 3, 5, 7 and 9 for m- ABA/p--ABA and m l x t ~  No. 14. 16, 18, 20 and 22 for o-ABA/m-ABA. 

• The meaning of the symbols is #v©u in Table 2. For th~ ¢xtend©ti 1~L~lman filter, t i~ ~nitial g~x~u~s o f  k s and k 2 are ~ven  in ti~ ~s~ 
eotumn of  Table 7. 
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reactions were too slow, and at pH higher than 5.5, 
some of  the analytes coupled in less than 1 min, 
which was not suitable for the manual mixing proce- 
dure used. Also, at pH values higher than 5.5, the 
absorbance of the reagent blank was large. This has 
been shown to be due to hydrolysis of  the diazonium 
ion to yield a phenol which couples with the excess 
reagent [37]. Also, at higher pH values, the azo dyes 
were unstable, and the absorbancv decreased rapidly 
after reaching a maximum. It was observed that the 
addition of SDS alleviated this problem and, there- 
fore, a final concentration of 2% SDS was used. 

To evaluate the rate constants, three solutions of 
each substTate at increasing concentrations were pre- 
pared, the procedure given above was applied, and 
the rate constants were calculated from the corre- 
speeding kinetic curves by the Powell algorithm and 
the extended Kalman filter, which were implemented 
to treat the data given by a single component. The 
resuhs of  the Powell algorithm were used as the 
initial values to be refined by the extended Kalman 
filter. The calculated rate constants were used in the 
computation afterwards. As expected, the results 
given in Table 7 showed a large variation of the rate 
constants with pH. The kinetic curves and the spectra 

of  the azo dyes o b t a i n e d  with two o-ABA and 
m-ABA solutions are shown in Fig. 5. It can bc 
observed that the m-ABA azodye was not stable. 

4.2.2. Resolution o f  binary mixtures 
The spectral-klnetic data of two series of  binary 

mixtures were obtained in the conditions given in 
Table 7. The data were treated by the four methods, 
,and the results were evaluated using three different 
number of wavelengths (1, 6 and 41 for m - A B A / p -  
ABA mixtures, and 1, 6 and 36 for o . A B A / m - A B A  
mixtures). The initial parameters provided to the 
Powell and the Kalman filter algorithms are listed in 
Table 8. The nominal compositions of  the mixtures 
are also given in Table 8. The AARE values of  both 
components for the two series of  binary mixtures and 
for the different methods are listed in Table 9. For 
the Powell algorithm, the estimated error was ex- 
tremely large for some of  the mixtures. For PLS, 
since five mixtures were used as the calibration 
samples, only the results of  the remain eight mix- 
lures were used in the computation of  AARE. Except 
with the Powell algorithm, the m , A B A / p - A B A  mix- 
lures gave satisfactory results with all the methods, 
even when only a single wavelength was used. The 

Table 9 
E~ro~ (AARE~, species 1/species 2) of the estimated concentrations of the binary mixtures using different algorithms 

rn-ABA/p.ABA 

No. of wavelengths used 1 6 41 
Powen _ a 56/20 61/7.8 
Linear Kalman filter 2.7/2.9 2.9/5.4 3.4/4.6 
Extended Kalman filter 8.3/4.6 4.0/3.8 3.5/3.6 
PLS 2.6/1.8 2.6/1.7 2.8/1.9 

o-ABA/m -ABA 

No. of wavelengths used 1 6 36 
Powetl _ a _ • _ a 
Linear Kalman filter 23/23 14/13 8.0/9.1 
Extended Kalman filter 21/25 4.1/3.3 2.4/3.3 
PLS 13/17 2.8/2.8 2,5/2.7 

aExtrcmely large absurd values. 

Fig, 6. Added (ful l  bar~) and estimated (grey bars) concentrations for the o-ABA and m-ABA misturcs with tke linear (upper pert) and 
extended Kalman filter (middle part) and with PLS (lower pan). In each plot) the upper halt are the concentrations of species 1 and the 
lower half shows the concentrations of species 2. In each figure, from left to right arc the rcstdls with 1, 6 and 36 wavelengths, and in each 
plot, the bars from left to right am the thirtcan mi.xtnv~:e in the order glvcn in Table 8. Attention should be paid to tl~ absence of the ba~ 
referring to the calibration mixtures for PLS. 
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incorporation o f  more wavelengths  did not improve 
the results,  because o f  the relative large difference of  
the rate constants  for the components  in this system. 

This  was  not  the case for the o - A B A / m - A B A  
mixtures.  The  single wavelength evaluation for the 
o - A B A / m - A B A  mixtures gave  much  higher error 
than that in the m - A B A / p - A B A  mixtures,  and the 
increase o f  the number  o f  wavelengths  improved the 
results remarkably. The  estimated concentrations for 
o - A B A / r a - A i ~ A  mixtures by different methods  (ex- 
cept the Powell algorithm) are shown in Fig. 6, 
together with the nominal  values o f  the concentra- 
tions. It can be deduced that PLS gave better results 
than the Kalman filters, and that the extended Ka iman  
filter performed better than the linear one for these 
experimental  data. The results of  o - A B A / m - A B A  
mixtures  suggested that more  wavelengths  should be 
used in practice for the linear Ka lman  filter com-  
pared to the extended filter. The more wavelengths  
used, the less the influence o f  the errors in the rate 
constants.  Moreover,  the influence o f  the number  o f  
wavelengths on the extended Ka lman  filter is not so  
significant as in the linear Kalman filter (also refer- 
ring to Fig. 3B), which  was  attributed to the correc- 
tion o f  the rate constants.  

5, Conc lus ions  

also showed a certain potential to compensate  the 
variation o f  the rate constants  when  multiple wave- 
lengths were used,  This  is due to the decrease o f  the 
influence o f  the error in the rate constants as more 
spectral information is incorporated. Though the hard 
modell ing methods  like the Kalman filter can offer 
reliable results under  certain conditions, the require- 
ment  o f  relatively accurate va lues  o f  the initial esti- 
mates  o f  the parameters and o f  other initial values to 
invoke the algorithm may  bring some  difficulty in 
practice. On  the other hand, the soft  modell ing meth- 
ods like PLS can provide quite favourable results 
almost  without any spectral and kinetic knowledge 
about the system.  The only requirement is that the 
relationships between the signal and the evaluated 
parameters should be linear. With PLS, when ade- 
quate calibration is performed, the results in terms o f  
accuracy and computat ion time are as good as with 
the Kalman filters. Thus ,  they would be more conve- 
nient for the practical application. 
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Firstly, accuracy improves with the number  o f  
wavelengths  used,  especially when  the difference o f  
rate constants  is small.  Secondly, the Powell  algo- 
r i thm gives the worst  results. The different perfor- 
mance  o f  the Powell algorithm and the Kaiman filter 
might  be attributed to the different minimizat ion 
criteria adopted ( s u m  o f  the squares o f  the residuals 
o f  the signals for the former and mean square error 
o f  the concentrations for the latter) and to the differ- 
ent  manner  in the t leatment  o f  the data (batch for the 
former  and recursive for  the latter). Modification in 
the one dimensional  searching and use o f  some  
constraints to limit the parameters to be optimized 
might  be helpful to obtain good results and to reduce 
the computat ion time. Compar ing  the linear and 
extended Ka iman  filters, the latter performs some-  
what  better than the former one. This  could be 
attributed to the correction o f  the rate constants  in 
the extended Kalman filter. The linear Kalman filter 
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