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Abstract

A comparative study was conducted to investigate the performance of scveral chemometric methods applied to the
ireatment of two-way kinetic-spectral data with the aim of resolving mixtures. The methods involved arc por-lincar least
squares regression performed using the Powell algorithm, the linear and extended Kalman filter, and partial least squares
regression. Both simulated and experimental data were processed. The coupling reaction of diazotized sulfanilamide with
arylamines to give azodyes was monitored spectrophotometrically. Binary mixtures of the substrates with diffevent values of
the rate constant ratio and with varied degrees of spectral overlap were resolved. The effects of several influence factors
have been studied using numeric simulation. The advantages and the limitations of cach method have been evaluated.
ics; Kinctic methods; Sp phott
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1. Introduction

During the last decade, and in comparison to
equilibrium methods, kinetic methods of analysis
have become increasingly popular owing to their
simplicity, precision, short analysis time, reduced
susceptibility to interferences and easy automation
[1]. The arca of multicomponent determinations is
one of the most active in the context of kinetic
analysis [1,2). Mixtures of reacting analytes have
been resolved in the past by means of the method of
proportional equations [3,4], however, only a small
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fraction of the data collected was used, which led to
a poor precision. With the introduction of the com-
puter in the chemical laboratory, kinetic methods of
analysis have become more powerful. Most often,
kinetic systems follow non-linear relationships and
thus, nonlinear regression of the initial concentra-
tions of the analytes and the rate constants should be
applied [5-7]. In the least squares methods, the sum
of the squares of the differences between the mea-
sured signal and the reconstructed signal is opti-
mized. In order to assure convergence and to achieve
accurate results, good initial estimates of the parame-
ters of the modecl are necessary.

The Kalman filter, a nonlinear regression algo-
rithm, is also widely used in the kinctic detcrmina-
tion of mixtures [8l In the Kalman filter, the mean
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square error of the estimates of the parameters (which
are called the state variables) is optimized. The least
squares and Kalman filter methods are declared to
provide similar results w.ider certain conditions [8].
The Kalman filter is a recursive algorithm, and initial
estimates of the state variables and also initial guesses
for the variance of these estimates and the measure-
ment variance should be furnished. The Kalman
filter has various versions, ie., the linear [8], ex-
tended [8), aday:iv: [9] and robust [10] versions that
are designed to address troublesome analysis in dif-
ferent areas. The original form of the Kalman filter,
the linear Kalman filter requires the model to be
linear with respect to the state variables, The linear
Kalman filter has been often used for kinetic deter-
minations, in which first or pseudo first order reac-
tions ar¢ assumed, and ihe rate constanis of the
reactions are well-known and supposed to be invari-
ant from run to run [11-15). The latter assumption is
a serious drawback since the rate constants are func-
tions of many experimental factors {e.g., tempera-
ture, pH, ionic strength and so on). Thus, the results
of the linear Kalman filter would be affected drasti-
cally by the value of the rate constants provided to
the algorithm [11].

If the above conditions are not met, then the
non-linear form of the Xalman filter, the extended
Kalman filter, may be vsed [8,16-23). Since the
Kalman filter was developad to be used with linear
models, then non-linear models should be linearized.
Usually a Taylor’s series expansion is used, where
an inherent error caused by truncation of high order
terms are introduced and it renders the extended
Kalman filter statistically non-opiimal. In addition,
the extended Kalman filter is more prone to the
influence of the initial guesses of the parameters than
the linear counterpart [17,18,20). For the extended
Kalman filter method adopted by most researchers
and in this study, the rate constants are assumed to
be time-invariant. The only difference between this
version of the extended Kalman filter and its lincar
counterpart is that the rate constants are regarded as
parameters to be estimated and are adjusted in the
process of filter. However, the commonly used ex-
tended Kalman filter tolerates a certain variation of
the rate constants {22,23]. The compensation of
time-variant rate constants caused by the temperature
variation was studied by Corcoran and Rutan [17,18].

For multicomponent kinetic analysis, more applica-
tions of the linear Kalman filter than that of the
extended Kalman filter are found in the literature [1].

The least squares and Kalman filter algorithms are
model based, and can be regarded as the so-called
hard-modelling methods, in which accurate model
information is indispensable to obtain good results.
Instead, in soft-modelling methods, no model should
be previously assumed, and an empirical model is
derived from the data themselves. Multiple linear
regression, principal component regression or partial
least squares regression (PLS) are used to build up
the medel from a number of mixtures known as the
calibration samples. These procedures have been used
extensively in equilibrium methods of analysis, but
they have been scarcely applied to kinetic analysis
[24-28). However, a rapid popularization of soft
modelling methods in the kinetic multicomponent
determinations is to be expected, owing to weir
efficiency in managing with the problems derived
from the incomplete models, imprecise data sets and
interactions among the components, which are fre-
quently found in kinetics. Also it is no necessary to
supply initial guesses of the parameters of the model,
as requited by the nonlineat regression methods.

In most of the reported procedures kinetic curves
monitored on a single wavelength have been used,
and relatively few applications have taken advantage
of the multi-wavelength data sets generated by an
array detector [22,23,28]. Simulated and actual ex-
periments have demonstrated that the extended
Kalman fiiter with the use of muitiple wavelength
detection can tolerate more serious spectral overlap
and smaller kinetic differences between the analytes
than the single wavelength approach [22,23]. The
three way PLS method of Wold et al. [29] has been
extensively used for the calibration of chromato-
graphic systems [30-33]. Recently, it has been used
to treat three way Kinetic-spectal data arrays [28).
The three-way PLS based on three way kinetic-spec-
tral data arrays has been claimed to provide better
results than the two way kinetic PLS method, partic-
ularly with mixtures having both a low rate constant
ratio and small spectral differences [28],

In this work, the performance of the Powell algo-
rithm (nonlinear least squares regression), the linear
and the extended Kalman filters, and the PLS method
when applied to two-way kinetic-spectral data were
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comparatively studied using both simulated and ex-
perimental data, Numeric simulation was imple-
mented to investigate the effects of different factors
of the models. The potential of these techniques fo
the kinetic simultancous determination of mixtures
of drugs was evaluated by using the coupling reac-
tion of diazotized sulfanilamide with the o-, m- and
p-aminobenzoic acids. Binary mixtures of these com-
pounds with different ratios of the rate constants, and
various degrees of the spectral overlap of the colored
products were resolved. The advantages and limita-
tions of each method were discussed from the view-
point of practical application.

2, Theoretical

2.1. Nomenclature

Lowercase bold characters are used for column
vectors, uppercase bold characters for two-way ma-
trices, and underlined italic uppercase bold charac-
ters for three-way matrices. The transpose of a ma-
trix or a vector is represented by the superscript T.
Unless otherwise stated, both lowercase and upper-
case plain characters are used for scalars, lowercase
and uppercase plain characters are also used as run-
ning indices and to indicate the number of dimen-
sions of the vectors or matrices, respectively.

2.2, Kinetic model

Consider a system of L active substrates, reacting
with a common reagent, R, to form L similar but not
identical products, P,, following the pseudo-first or-
der reactions:

C,+R-P (1)

where C, denotes the I-th component and P, is the
corresponding product. We will assume that only the
proc icts absorb within the monitored wavelength
region, and that the absorbances are additive and
follow the Lambert-Beer law. If the spectral scan in
the whole wavelength range at each time point can
be regarded as instantaneous, then:

A= Esh,c.{l - exp(-—k'ti)} +B (2)

where A;; is the absorbance of the mixture at the
wavelength A; G = 1,...,1) and the time t; ( = 1,....3),
S,; is the molar absorptivity of the P; product at the
A; wavelength, ¢, is the initial concentration of C,
(=1,.,L), k, is the corresponding rate constani,
and B is the backgrouid absorbance which is as-
sumed to be constani. Thus, Eq. 2 contains the
complete time-spectral kinetic information of the
mixture. Next, the way the different a!gorithms have
been implemented to evaluate the imitial concentra-
tions is briefly explained.

2.2. Powell algoritim

The Powell algorithm was implemented following
the indications giving by Rao [34] The one-dimen-
sional searching was performed with the quadratic
interpolation method. Initial guesses of the parame-
ters to be estimated together with the initial search-
ing directions and the step size to be used were
provided. The coordinate axes were used as the
initial directions. The parameters to be estimated
were the concentrations of the analytes, the rate
constants and the background absorbance.

2.4. Linear and extended Kalman filter

The equations of the Kalman filter algorithm are
listed in Table 1, and a brief explanation with em-
phasis on the way the multichannel computation was
implemented, is given next.

The Kalman filter algorithm is based on two
equations, one is the system dynamic equation (Eq.
3) and the other one is the measurement model
equation (Eq. 4). In the linear filter, the system state
vector x(k) consists of the initial concentrations of
the analytes, and sometimes the background ab-
sorbance is also included. In the extended filter, the
rate constants of the reactions have also been in-
cluded as state variables. If the rate constants are
known accurately, only the concentrations of the
analytes should be estimated, then Eq. 2 will be
linear with respect to the state variables. On the other
hand, if the rate constants are not so certain, and they
should be regarded as state variabies to be estimated
from the measurements, then Eq. 2 wiil be nonlinear
with respect to the staie varfables. In most applica-
tions of the extended Kalman filter and also in this
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Table 1
Equations of the Kalman filter algorithm

System dynamic equation x(k) = F{kk ~ Dx(k — 1) + w(k) (3)
Mecasuremaznt model equation
multiple channel linear: z(k} = HT(K)x(k) + v(k) (4a)
single channel linear: 2(k) = W (kK + v(k) (4b)
Ifiple ck I nonlinear: z(k) = FOx(k)v(k) (4c)
single channel nonlinear: z(k) = f{x(k)) + v{k) (4d)
State estimate extrapolation x(k/k—D=x(k—~1/k=—1) (O]
Ertor covariance extrapolation Pk/k~1D)=Pk—-1/k=—1) ®)
State estimatc update
multiple channel: x(k/k) = x(k /k — 1} + K(k)glk} (7a)
single channel: x(k k) = x(k/k — 1) + k{igg(k) (7b)
Error covariance update
muitiple channel: Pk/K) =1 - K(ORTWOIPk/k— 1) (8a)
single charmel: Pk /K) =1 — k(KA k- 1) (8b)
Kalman gain
multiple channel: K(k) = Pk /k — DHEETGOPK/k — 1)H(K) + R3] ! (9a)
single channel: kik) = Pk /1 ~ 1Dk MK /k — 1h(k) + RG] ! (9b)
Ianovation
miudiiple charmel linear: gk} = z(k) — H"(xtk /k — 1) (10a)
single channel linear: g(k) = z(k) — h™(k)x(k /k — 1) (10b)
multiple channel nonlincar: (k) = 2(k) — F(x(k)} (10c)
single channel nonlinear: 8(k) = (k) - Rx(k)) (10d)

work, the rate constants are treated as time-invariant,
so the state transition matrix ¥ is an identity matrix
as that in the linear filter. In the extended Kalman
filter, if the rate constants are assumed to be time-de-
pendent, then a state transition matrix describing
such dependency is required [8,17,18]. If the rate
constants are adjusted from time to time in the
filtering process, then more inaccuracy in the values
of the rate constants may be tcicrated, The state error
vector w(k) terms were usually taken as zeros since
most of the dynamic models used in analytical chem-
istry are deterministic. The matrix H(k) (or vector
h(k)} in Eq. 4a (or in Eq. 4b) is the linear measure-
ment function matrix (or vector), while in Eq. 4c and
4d it denotes the nonlinear measurement function.
Both the linear and extended Kalman filter share
the same presentation of the algorithm (Egs. 5 to 10),
but when the extended filter is adopted, the measure-
ment function H (or h) in the recursive algorithm
should be calculated from the nonlinear measure-
ment model of Eq. 4c (or Eq. 4d} by using the
Taylor's series expansion. This is applied to the
current estimate of the state variables with the trun-
cation after the linear term. When multiple wave-

length spectral-kinetic data are used in the filter, the
inversion operation in the computation of the Kalman
gain is required. The resulis of the Xalman filter
depend on the initial estimates of the state variables,
as it also eccurs with the Powell algorithm. Addi-
tionally, the Kalman filter results rely on the initial
guesses for the variance of the corresponding esti-
mate values, and on the variance of the measurement
noise.

25.PLS

Implementation of two-way PLS involves to build
up a calibration model based on the so-called calibra-
tion data matrix, say X, obtained by recording the
absorbance of N mixtures of known compeosition at 1
different wavelengths. The PLS model for matrix
form data is:

X=Xt,pl +E=TP"+E amn

Y=Zuq]+F=UQ"+F
U=TB+H
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and the prediction equation for Y is:
Y =TBQ' (12)

where T = {t,,...,t ;} is the score matrix, and P={p,,
.} is the loading matrix for X, and where U and
Q for Y have the same meaning as T and P for X.
The subscript J represents the number of principal
components retained in the model.

In a kinetic determination, when a diode array
detector is used to record the spectra of the reacting
mixtures, the data obtained for the calibration mix-
tures constructs a three-way data array. In this case,
Eq. 2 can be extended to:

A =E8,Cosft —exp(~kt)} +B  (132)
=18,,C..K;, +B

that in matrix-tensor form is:

A=Xs0c @k, (13b)

where A is a N X I X J three way response data array
and A_; ij is its typical element, ¢, is the vector of
the concentration of the I-th analyte, s, is the molar
absorptivity vector of the P, product and k, is a
vecior containing the kinetic information for the }-th
component and whose generic element is {1 —
exp(—k,t;)}. The symbol @ represents the tensor
product [29]

The generalization of PLS to X and ¥ three-way
datz arrays has been described by Wold et al. [29].
The three way PLS leads to the following model:

X=T.eP +E (14)
¥=Ue@ +F
U=TB+H

To estimate the parameters of the three way model,
Wold et al. [29] suggesied to unfold the three way
data array ia the direction which leaves the first
mode intact, which in our case is the concentration
mode. Thus, the model parameters can be estimated
on the basis of the unfold data matrices.

The NIPALS aigorithm [35] is used to decompose
the data array, and cross validation (leave-one-out
procedure} is adopted to determine the number of
latent variables to be retained in the calibration
model.

3. Experimental

3.1. Apparatus

Kinetic measurcments were done in a Hewlent-
Packard HP 8452A photodiode amay spectropho-
tometer provided with a 1-cm quantz cell. The pH
valucs were adjusted with a Crison MicroPH 2001
pH-meter. The spectrophotometer and data transfer
were controlied by an 1BM 486 compatible micro-
computer, and calculations were also conducted on a
486 type computer., All the computation programs
were written in MATLAB (Math Works, Sherborm,
MA).

3.2. Reagents, solutions and procedures

Analytical reagent grade ¢-, m- aad p-amino
benzoic acids (ABA, Merck, Darmstadt, Germany),
sodium dodecyl sulphate (SDS, Fluka, Buchs,
Switzerland), sulfanilamide (Sigma, St. Louis, MO),
sulfmnic acid (Fluka), sodium nitrite (Fleka), and
citric acid monohydrate (Panreac, Barcelona, Spain)
were used, Distilled demineralized water (Barnstead,
Sybron, Taunton, MA) was used throughout. Ali
other reagents wete analytical grade. The scries of
pH buffers of 0.25 mol 17 citric acid were prepared
by adjusting the pH potentiometrically with a sodium
hydroxide solution. Stock solutions of o-, m- and
Pp-ABA were prepared by solving 17.5, 17.5 and 18.5
mg, respectively, in 1 ml ctharol and then diluting
with water to SO ml. A 4 1072 mol 1! sulfanil-
amide stock solution was prepared in 0.3 mol 1’
HCI A 6.2 mol I”! NaNQ,, 0.5 mol 1"! sulfamic
acid and 20% SDS solutions were made with water.
To prepare the 1 1072 mol 17} diazonium ion
solution, 12.5 ! of the sulfanilamide solution was
introduced into a 50 mi volumetric flask, 15 ml
NaNO, was added, the mixture was allowed to react
for 10 min, 15 m! sulfamic acid was added to destroy
the excess nitrite, and after 15 min the volume was
completed up to the mark with water. The diazonivm
ion solution was renewed daily.

Mixtures were made by introducing the adequate
volumcs of the ABA stock sclutions, 20 ml buffer
and 2.5 ml 20% SDS into a 25 ml volumetric flask,
and adding water up to the mark. A 2.25 ml volume
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of the mixture was transferred into a dry 1-cm quartz
cell, and then 0.25 ml diazonium ion solution was
injected into the cell with a 500 ul regulable piston
pipeite, immediately after pressing the start button to
acquire the data, Mixing was done by bubbling the
solution in the cell four times with the piston pipette.
The data collection was delayed 10 s thus to avoid
the mixing period of the solution. The data were
acquired within the 10-910 s range with 30 s inter-

Table 2

vals between the successive wavelength scans. The
spectra were recorded within a given wavelength
range (the spectral resolution of the HP8452A spec-
trophotometer is 2 nm). The blank was prepared in
the absence of the ABAs and measured in the same
way. The blank absorbance was always substracted
from the sample absorbance before the data process-
ing. The first time point was removed, thus a total of
30 time points were used in the data processing.

Synthetic data sets for the investigation of the cffect of the number of wavelengths

S for both specics: 2000 mol 1!

Width of peaks: 15 nm

Position of peaks: 565 and 585 nm for species 1 and 2, respectively
Wavelength range: 550 10 600 nm with 1 nm interval

Number of wavclength points:

Rate constanis:

Time range:

Number of time points:
Standard deviation of noise:

51 (from 1 to 51 were used)
5% 107 and 3.5 % 107357 for
10 to 910 s with 30 s interval

pecies 1 and 2, respectively

31 {all the points were always used)
0.1% of the maximum absorbance value

Background absorbance: 0.005
Datasels Sk(%) ® 56s) b Mixture composition{ X 10~? mol. 1~ })
A 0.0 ] No. Species 1 Species 2
B 1.0 [ 1 1.0 Lo
C 5.0 1] 2 1.0 3.0
D 100 0 3 1.0 5.0
4 30 1.0
1 0.0 0 5 30 3.0
2 0.0 4 6 30 5.0
3 1.0 4 7 5.0 10
4 5.0 4 8 50 3.0
5 10.0 4 9 50 5.0
6 200 4 10 20 20
7 300 4 1 2.0 4.0
8 40.0 4 12 4.0 20
9 50,0 4 13 4.0 4.0
Initial values of the parameters for the Kalman filter and Powell algorithm ©
Linear Kalman filter: xg = (0.00 0.00 0.00) R=10"% o2=5x10"*
Extended Kalman filter: X o = (0.00 0.00 0.005 0.0035 0.60) R=10° ai=5x10""
Powell algorithm: Xq = (0.00 0.00 0.005 0.0035 0.00)

Step size = (104 1074 107° 107° 10~ %)

PLS calibration samples:

Mixture Nos, 1, 3, 5, 7 and 9

* Normally distributed random numbers multiplied by 8k (a percentage of the nominal value of k) were added to the nominal values of the

rate constants.

The timing imprecision for cach mixture in the data set is an evenly distributed random number within 0 and 1 multiplied by &¢.

© x, is the vector of the initial state variables. The first two el

and the last ane is the

are the ions of both sp

background absorbance. For the extended Kalman filter and Powell algorithm, the other two clements are the rate constants. R is the
variance of the absorbance noisc, and o? is the variance of the estimates.
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3.3. Generation of simulated data

The spectra of mixtures of two components were
simulated by using gaussian shaped peaks. The peak
positions of the two components were fixed at 565
nm and 585 nm, respectively, and the width (stan-
dard deviation of the peaks) was fixed to 15 nm, or
as otherwise specified. Data were generated within
the 550-600 nm range with 1 nm interval between
them. The nominal values of the first order rate
constants used were 5% 1077 and 3.5x 1073 s,
and they were allowed to change a finite amount
along the tume scale in a random way. The amount of
variation was an arbitrary value, 8%, multiplied by a
random number which followed a normal distribu-
tion, Thus, the rate constant changed along the ki-

netic process for the same mixture in a random
wmanner. The time range monitored was from 10 to
910 s in 30 s intervals. In order to simulate the
situation in which the start of the data acquisition
period would not accurately coincide with the start
of the reaction, a timing imprecision was introduced.
For this purpose, an arbitrary time quantity, 8¢ (in
seconds), was multiplied by an evenly distributed
random number within the 0-1 range, and added to
the time values of the mixtures. In this way, different
mixtures of the same data set had a different time
shift. For each data set, a tota] of 13 mixiures were
simulated. The perturbed rate constants, the timing
imprecision together with the standard spectra and
the composition of the mixtures were used to gener-
ate the response data according to the kinetic model

Table 3

Synthetic data sets for the investigation of the cffect of the ratio of the kinctic rate constants and the spectral overlap *
S for both species: 2000 mol ' 1

‘Width of peaks: 10 nm

Position of peaks: varied

Wavclength range: 550 to 600 nm with 1 nm interval

Number of waveleagth points:
Rate constants:

Time range:

Number of time points:
Standard deviation of noise:
Background abserbance:
Variation of rate constants:
Timing imprecision (5¢);
Composition of mixtures:

51 (11 points from 570 10 580 nm were used)
3.5% 1077 s~ for species 2

10 to 910 s with 30 s imtcrval

31 (all the points were always used)

0.1% of maximum absorbance value

0.005

10%

2s

the same as in Table 2

The degree of spectrat overlapping

Experiment No. 1 2 3 4 5 6

Peak of species t 565 567 569 571 573 575

Peak of species 2 585 583 581 579 577 575

Degree of overlap 20 1.6 1.2 08 04 0.0

The differcrce of Kinetic rote constamts

Experiment No. 1 2 3 4 S 6 7
Rate constant of species 1(k.) 5.00 4.75 4.50 4.25 4.00 375 350
Ratio of rate constants (X, /k-) 1.43 1.36 1.29 1.21 114 1.07 1.00
Initial values of the parameters for the Kalman filier and Powell algorithm

Linear Kalman filter: xq = (0.00 0.00 0.000 R~=10"% ci=5x10""
Extended Kalman filtes: x¢ = (0.000.00 k, &, 0.00) R=1G° el=5x10"%

Powecll algorithm:

Xo = (0.000.00 &, k; 0.00)
Stepsize =(10"* 1077107 * 10" % 10~ %)

Calibration samples of PLS:
Mixtures No. 1, 3, 5, 7and 9

* The meaning of the symbols is given in Table 2.
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of Eq. 13. A constant was added as background
absorbance and zero-mean random numbers with 2
gaussian distribution were added to the absorbance
values to simulate the experimental noise. The stan-
dard dviation of the added noise was a certain
percentage of the maximum absorbance of each mix-
ture.

Here, we did not try to distinguish if the variation
of a rate constant is produced within-run or between-
run, but the rate constants changed always from time
to time and from mixture to mixture, thus to simulate
the perturbations introduced in the real experiment
by small variations of the experimental and instru-
mental conditions during data collection. For each
data set, a 13 X 51 X 31 three way data array of
simulated data consisting of concentration, wave-
length modes and time was obtained. The parameters
and the composition of the mixtures used in the
simulation are listed in Table 2. These data sets were
used to investigate the effect of the number of
wavelengths on the performance of the different
algorithms.

In order to study the effects of the difference of
the kinetic rate constants and the spectral overlap,
other synthetic data sets were used. Different rate
constant ratios were obtained by decreasing the value

Table 4

of the rate constant of species 1 while maintaining a
fixed rate constant for species 2, A total of 7 differ-
€nt rate constant ratios were considered with a maxi-
mum of 1.43 (5 x107?/3.5% 10°%) and a mini-
mum of 1 (3.5 % 1072/3.5x 1073). The spectral
overlap was evaluated as the ratio of the distance
between the two peaks and the width of the peaks.
The degree of spectral overlap was changed by
shortening the distance between the peaks while
maintaining a constant peak width. A total of 6
situations were considered in which the maximum
ratio was 2.0 and the minimum one was 0. There-
fore, a total of 42 data sets with varied rate differ-
ences and spectral overlaps were synthesized. In
each data set the 13 mixtures listed in Table 2 were
used. Again, each data set gave a 13 X 51 X 31 three
way data array. The parameters used in this simula-
tion experiment are presented in Table 3.

As the Powell algorithm for nonlinear regression
and the Kalman filter need initial guesses of the
parameters to be estimated, and the Kalman filter
also needs guesses of the variance of these initial
estimates and the variance of the experimental noise,
another relatively ‘clean’ data set without perturba-
tion of the rate constants and timing imprecision was
synthesis to investigate the effects of the initial

Synthetic data set for the investigation of the effect of the initial estimates of the rate constanis *

5.0x 1072 and 3.5 % 10~ ? s~ for species t and 2, respectively

S for both species: 2000 mol ™' 1

‘Width of peaks: 15 nm

Wavelength range: 550 to 600 am with | nm interval

Number of wavelength points: 51

Number of wavelengths used: 1 (575 nm), 5 (573-577 am) and 21 (565-585 nm)
Rate constants:

Time range: 10 to 910 s with 10 s interval

Number of time points:
Rai: ~onstants used in evaluation:
Standard icviation of noise:

(1.00 £ 025} X &

Background absorbance: 0.065
Variation of rate constants: 0%
Timing imprecision (51): 0s

Composition of mixture:

91 {all the points were always used)

0.5% of maximum absorbance valuc

1.000 X 107" moi 1~} for bath specics

Initial values of the parameters for the Kalman filter and Powell algorithm

Linear Kalman filter: x5 = (0.00 0.00 0.00) R=10""° ol=5x10""
Extended Kalman filter: xp=[00(1 £0.25) x &, (1 £ D.25) X &, 0] R=10"? ai=5x%x10""
Powell atgorithm: xg=[00(1+0.25) %k, (2+ 025X &, 0]

Step size = (10741074 107° 107 ° 10" %)

* The meaning of the symbols is given in Table 2.
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guesses. The parameters used to synthesize the data
are listed in Table 4, where only one mixture was
generated and the sampling interval for time was
shortened from 30 s to 10 s to guarantee the conver-
gence of the Kalman filter. This data set was treated
by changing the initial rate constants up to a +25%
of the nominal values in 2.5% intervals. A total of
441 different combinations of initial rate constants
(21 x 21) were evaluated with three different num-
ber of wavelengths (i.e., 1, 5 and 21 wavelengths),

3.4. Data processing

For the linear and extended Kalman filters and the
Powell algorithm, the values of the initial estimates
of the concentration were always set to zero in order
to avoid bias. The initial estimates of the rate con-
stants were always taken as the nominal values used
in the simulation, except in the simulation experi-
ment addressed to study the effect of the initial
values of the rate constants. Other initial values used
are given in Tables 2—4,

The average absolute relative error used for the
evaluation of the results was:

No|a, -8
Z nlh ni % 100
AARE, = ==L — (15)

where &, is the estimate for the true concentration of
the 1-th component in the n-th mixture, ¢, and N is
the number of mixtures.

PLS is an indirect calibration procedure that makes
use of a set of calibration mixtures instead of using
the sta.idard spectra and the rate constants of the
components in the calibration process. Therefore, the
comparison between PLS and the other algorithms
will not be straightforward. We have always used the
same five mixtures in each data set as the calibration
mixtures (No. 1, 3, 5, 7 and 9 in ‘Table 2), to build
up the calibration model, and to predict the concen-
tration of the analytes in the other eight mixtures.
The average error defined in Eq. 15 and obiained
with PLS over these cight mixtures was compared to
the error obtained also with Eq. 15, but using the
thirteen mixtures with the other three methods.

4. Results and discussion
4.1. Numeric simulation

4.1.1. Influence of the number of wavelengths at
several 8t and 8k values

First, simulation studies were performed for the
kinetic determination of mixtures in which the prod-
ucts were assumed to absorb with a given degree of
spectral overlap (i.e., 1.33), and also with a fixed
ratio of the first-order rate constants (i.e., 1.43), and
the number of wavelengths was varied. Two groups
of data sets were generated (Table 2). In one group,
the variation of the imprecision of the rate constants
(8k) was in the range of 0% to 10% for four data
sets, but no timing imprecision was assumed therein.
With another group of data sets, a more serious
variation of the rate constants was performed and a
maximum random timing imprecision of §t=4 s
was considered in the data synthesis. The number of
wavelengths incorporated in the data processing was
increased from only a single wavelength to the whole
spectrum {51 wavelength points) with an increment
of 2 at a time. However, for the Powell algorithm, a
larger increment of the number of selected wave-
lengths was used, thus to reduce the very large
overall computation time. The wavelength located in
the centre of the spectrum (the 26th wavelength
point, 575 nm) was used for the single wavelength
computation, and it was also fixed as the centre of
the wavelength range when more wavelengths were
adopted. The AARE values against the number of
wavelengths and for species 1 are shown in Fig. 1.
The corresponding results for species 2 were entirely
similar and are not shown. Owing to the relatively
large errors given by the Powell algorithm, different
AARE scales were used in the presentation of the
results (see Fig. 1).

From Fig. 1, it can be seen that if only a single
wavelength was used, it was difficult to obtain ac-
ceptable estimates for the concentrations. For the
linear Kalman filter and PLS, the acceptable results
scemed to be obtained for the data sets with varia-
tions of the rate constants less than 5% in the single
wavelength situation. It is beyond expectation that
the extended Kalman filter gave worse results than
its linear counterpart with some of the data sets.
Even for the ‘cleanest’ data set (data set A and data



Y.-L. Xie et al. / Analytica Chimica Acta 321 (1995} 75-95 85

set 1), it could not provide accurate estimates. The
possible reason is that we tried to use constant initial
guesses for the covariance (variance) of the state
estimates and measurement noise, but different mix-
tures in the same simulation conditions were affected
in a slightly different way by these initial guesses. In
other words, the filter parameters may not be optimal
in some cases. However from the viewpoint of the
practical application, we still adopted fixed initial
guesses for the computation of all the mixtures in the
data sets. In addition and in comparison to the other
algorithms, it seemed much more difficult for the
Powell algorithm to provide acceptable results when
cnly a single or a few wavelengths were used in the
computation.

In all cases, the estimates converged quickly to a
certain error level as the number of wavelengths
used in the computation increased. Thus, the utiliza-
tion of multiple wavelenaths in the evaluation of the
results is obviously superior to the single wavelength
situation for all the methods. Of course, this superi-
ority is obtained at the expense of more data and
more time for computation which is not a problem
for the off-line treatment of the kinetic data. To
reach a given value of the ervor, the number of
wavelengths required was more or less the same both
for the linear and extended Kalman filter, but the
Powell algorithm needed more wavelengths than the
Kalman filter. A large number of wavelengths was
also required by PLS, which is reasonable since no
model is assumed in PLS and the calibration is
performed from the data by themselves. Comparing
the data sets with a rate constant variation smaller
than 10%, it can be observ:d in Fig. 1 that the
introduction of a timing impre. sion did not alter the
results significantly, v.itich hints that the major factor
affecting the precision was the variation of the rate
constants rather than the timing imprecision. From
the lower part of Fig. 1, it can also be seen that, if
sufficient wavelengths were used, higher than 30%
variation in the rate constants could be tolerated,
however, the rumber of the sufficient wavelengths
were ditferent for the different procedures. In gen-
eral, more wavelengths were nceded with PLS than
with the other algorithms.

It seems that the linear Kalman filter can tolerate
some variation of the rate constants when many
wavelengths are used. From Fig. 1, one cannot see

significant differerices between the results of the
linear «nd extended Kalman filters. One possible
reason is the zero mean feature of the noise used in
the simulation, and the signal averaging effect result-
ing from the many wavelengths incorporated. When
only a single wavelength was uscd, the spectral
difference was not utilized and the error would criti-
cally depend on the error of the rale constants.
Instead, in the multiple wavelength situation, the
influence of the error of the rate constants decreased,
as the number of wavelengths used increased. A
larger number of wavelengths means to add more
information to the data set, and therefore, to improve
the quality of the data set. Another intrinsic factor
may probably be that there is no significant differ-
ence between the linear and extrnded Kalman filter
used, because in both cases, the rate constants which
can be adjusted pointwise in the extended Kalman
filter were assumed to be time-invariant. However,
our experience and that of other researchers [19] has
proved that the estimated accuracy for the concentra-
tions and for the rate constants in the extended
Kalman filter are not always the same, bul some-
times, the concentrations can be estimated much
more accurately than the rate constants. In such a
case, the variation of the rate constants may affect
the linear and extended Kalman filter in a similar
way. The next point that should be sticked out is that
the extended Kalman filter was largely affected by
the initial guesses of the vanance of the state vari-
ables and of the measurement noise, which should be
chosen carefully for the system investigated, and that
could cause problems in the practical application.

The performance of the Powell algorithm de-
serves more attention. For the mixtures in the same
data set, and when the same initial parameters were
used, the Powell algorithm very often succeeded in
some cases and absolutely failed in others. There-
fore, it is imperative to choose suitable initial values
for each mixture in order to achieve good results, but
th.: problem is the lack of heuristic rules to do that. It
should be pointed out that, qualitatively, the Powell
algorithm needed much more computation time
(about 50 times in average) than the other algo-
rithms, and also there was no direct proportion be-
tween the computation time and the number of wave-
lengths incorporated.

Finally, the slightly slow convergence of the re-
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Fig. 2. The error (AARE) as a function of the rate constants (from 1.00 to 1.43) and the spectral overlap {from 2.00 to 0.00). Species t (A)
and 2 (B) for the Powell algorithm, and species 1 for the linear (C) and extended (D) Kalman filters and for PLS (E),
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sults of PLS to a low errar level did not mean that
PLS is inferior to the hard modelling methods. For
the sake of simplicity, only five mixtures were used
to construct the calibration model for all the cases.
When ‘unclean’ data sets are dealt with, larger cali-
bration sets should be used, and better results are to
be expected.

4.1.2. Influence of the kinetic rate constant ratio and
spectral overlap

The degree of spectral overlap and the ratio of the
rate constants were varied. A total of 42 data sets
were generated according to the simulation condi-
tions described in the Experimental section and that
are listed in Table 3. The number of wavelengths

EXTINDED KALNAN FILTER(DTS nm)

Fig. 3. Influence of the accuracy of the initial guesses of the rate constants. For the Powell algorithm (upper part), linear Kalman (middle
part) and extended Kalman filter (fower part). From left to right, results obtained with 1, 5 and 21 wavelengths. Attention should be paid 1o

the changes of scale of the AARE axis.
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used in the computation was 11, and the nominal
values of the rate constants were used as the initial
guesses in the Powell algorithm and the Kalman
filter. The AARE of the estimated concentrations
obtained using the different algorithms are shown in
Fig. 2A—E. For the convenience of the graphic pre-
sentation, the AARFE values were normalized to a
maximum of 100%. As expected, it is observed that
the error increases as both the spectral overlap in-
creases (its numerical estimation decreases from 2.00
to 0.00) and the ratio of the rate constants decreases
(from 1.43 to 1.00). The results were very good
except with the Powell algorithm, and with those
cases where both a serious spectral overlap and a
very small ratio of the rate constants existed. Since
the two components showed very similar error be-
haviour for all the algorithms, except for the Powell
algorithm, only the resulis of one component are
shown in Fig. 2C—E. It was reasonable to have a
similar error behaviour for both components, because
their spectra have the same shape, and the rate
constants and the variations of concentrations in the
mixtures were also similar. The results with the
Powell algorithm might not retlect the real situation,
since the Powell algorithm was not so stable and
very often missed the optimum in this study.

In Fig. 2A-E, it is also observed that the accuracy
of the estimates was affected much more by the
spectral overlap than by the kinetic difference. In the
extreme situation in which the rate constants were
identical, most of the methods still supplied reliable
results, so long as there was a sufficiently large
spectral difference. It should be considered that mix-
tures with vory small kinetic differences were used,
and that the variation of the rate constant ratio (from
1.43 to 1.00) would only slightly change the shape of
the kinetic curves, and therefore, it could not bring

Table 5

AARE values (species 1/species 2, in percentage) for the data set
of Table 4 when the nominal values of &k, and &, were provided
as the initial guesses

No. of Powell Linear Kalman Extended Kalman
wavelengths

1 99,/98 0.40,/0.77 0.29/2.80

s 5.0/6.5 0.61/0.24 1.7/0.67
21 0.23/0.14 0.077/0.095 0.17,/0.39

much variation in the resultant kinetic—spectral data.
Relatively, the spectral variation derived from the
change of speciral overlap (from 2.0 to 0.0) was
larger. Therefore, the results would be more sensitive
to the spectral variation than to the kinetic differ-
ence. These results coincided with the results ob-
tained by other authors [22,23].

4.1.3. Influence of the initial guesses on the nonlin-
ear regression techniques

Tie effects of the initial estimates were also
studied by using simulated data. Usually, no a priori
knowledge about the concentrations of the analytes
in the mixtures is available, so it would be reason-
able to set them to zero in order not to introduce
bias. Initial estimates of the rate constants should be
also provided to the Powell algorithm and the ex-
tended Kalman filter. With the linear Kalman filter,
the value of the rate constants is also required to
construct the measurement function. In practice, ap-
proximate values of the rate constants can be esti-
mated. We are here interested in investigating the
effect of the inaccuracy of the initial rate constants
provided to these algorithms. A simulated data set in
the conditions given in Table 4 was generated for
this purpose. The initial ruic constants provided to
the algorithm were changed in the range of +25%
of the nominal values. In each mixtre, the concen-
trations of both components were estimated using 1,
5 and 21 wavelengths.

For simplicity, the AARE values of only one
comporent are shown in Fig. 3. Similar results were
cbtained for the other component. The AARE values
obtained with the ncminal values of &k, and %k, are
shown in Table 5 and the AARE values given with
erroneous values of the rate constants are presented
in Fig. 3. The results of Fig. 3, upper part, indicate
that in the single wavelength situation the Powell
algorithm converged without finding the optimum.
With the same initial parameters, however, the re-
sults were improved when more wavelengths were
adopted, although in many cases, the optimum was
still missed. The estimate ercors decreased remark-
ably as more wavelengths were adopted for the
Kalman filter. This was reasonable, since more mea-
surement information was included in the computa-
tion and used to improve the estimates. Owing to the
possibitity of adjusting erroneous initial rate con-
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stants, it could be expected that the resuits given by
the extended Kalman filter should be better than
those given by the linear Kalman filter, however, the
differences were small. Once again, the results shown
in Fig. 3 stressed the advantage of the use of multi-
ple wavelengths.

When the initial values of k, and k, provided to
the algorithms were modified, the linear and ex-
tended Kalman filters give rise to narrow elongated
valleys of the AARE value, which include the posi-
tion of the k, and k, nominal values (Fig. 3). This
was attributed to the mutual cancellation of the
influence of the systematic errors of the two con-
stants. This suggests that at least in some cases the
system has not the necessary information to distin-
guish between k, and &,. Therefore, the system has
not either the information required to adjust indepen-
dently k, and k&, to the nominal values. Conse-
quently, it is not surprising that the extended Kalman
filter had not the capability of improving the results
given by the linear Kalman filter.
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The effects of varying the initial guesses of the
estimates of the variance of the state variables, and
of the measurement variance (required only by the
Kalman filter) were also investigated. We have found
that, qualitatively, it is the relative rather than the
absolute magnitude of the state covariance and the
measurement variance that influence the estimates.
Also, they have more influence on the extended
Kalman filter than on the linear Kalman filter. For
the linear Kalman filter, when these values were
varied in a relatively large range, they did not de-
grade the results significantly, but that was not the
case for the extended Kalman filter. We also found
that the initial guesses could be taken in a wider
range as the number of wavelenghts used in the
evaluation increased. However, since the choice of
tnitial values depends on the system investigated,
i.e., on the ratio of the rate constants and spectral
overlap, relative concentration of compcnents and
level of noise, the choice of optimal initial values is
not a simple matter.
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Fig. 4. Sequences of the state cstimates (left patt) and the corresponding innovation sequences (right part) for the linear Kalman filter when
accurate (upper pant} and erroncous (fower part) initial guesses of &, and k, were provided to the algorithmr.
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in the Powell algorithm, another factor studied
was the initial step size for the one dimensional
searching. In the literature there is no criterion of
how to define the searching step size when a new
searching direction should be used in the computa-
tion cycling. Most often, if the initial searching step
size corresponding to the rate constants was too
large, the algorithm diverged. We found that it is
advisable to use a relatively smali initial step for the
directions referring to the rate constants, since the
initial values of the rate constants might be suffi-
ciently accurate.

The Powell algorithm, indeed, did not give any
means of detecting model errors. However, from our
experience and that of others [19], the Kalman filter
algorithm cannot provide more advantage at this
point. We have found that sometimes the white noise
characterized innovation sequence and the strongly
smoothed state sequence might correspond to both
very accurate and very absurd estimates. Some ex-
amples which were extracted from the study of the
effects of the initial rate constants (data sets obtained
in the conditions of Table 4) are given in Fig. 4. Fig.
4A shows a state sequence evolved with the linear
filter, and Fig. 4B is the corresponding innovation
sequence. The number of wavelengths used for the
evaluation was 1 and the initial rate constants were
the nominal values used in the data synthesis (which
refers to the central point in the left plot of Fig. 3,
middle part). In this case, the concentrations were
estimated accurately (0.996 X 10~* for species 1 and
1.0077 X 104 for species 2). The filter feature re-
flected by Fig. 4A and B coincided with the fact that
the estimates were highly accurate. However, when
erroneous initial rate constants were used (3.75 X
1073 and 2.625 % 10~* s~! for species 1 and 2,
respectively, which corresponds to the bottom corner

point in the plots of Fig. 3), the inaccutacy of the
estimates of the concentration (168% for species 1
and —173% for species 2) were not reflected by the
innovation plot and state sequence plot (Fig. 4C and
D). The innovation sequence in Fig. 4C was also
characterized by the white noise and the state se-
quences were alse smoothed. Furthermore, all the
final variances of the estimated concentrations in
these two situations were of about 10~ !2, Therefore,
it was hard to say which results should be accepted if
we did not have the concentrations in advance.

The same occurred with the extended Kalman
filter. In the investigation of the initial guess of the
variance of experimental noise, two extended filters
were carzied oat. In both cases, the same initial
guesses were used, but in one of the filters the initial
variance of the experimental noise was assumed to
be 102, and in the other filter it was given the value
1074, Random innovation sequences were obtained,
and in both cases, the state sequences were smooth,
but the accuracy of the estimates differed largely.
The estimated concentrations and rate constants for
these two experiments are given in Table 6. It is
deduced that the characteristics of the innovation and
the values of the error variance of the Kalman filter
cannot be directly used as criteria to estimate the
accuracy of the evaluated state variables {11), since
these characteristics were related with an exact
model.

4.2. Treatment of experimental dala

4.2.1. Optimization of the reaction conditions

Since only the basic form of the ABAs (the
non-ionic free amines) are sufficiently activated to
couple with diazonium ions, the reaction rate is
largely affected by pH [36]. Thus, at pH < 3.5, the

Table 6

Effect of the initial guess of the absorbance variance, R, on the performance of the extended Kalman filter *

R State variable c cy ky k;
(x10"* mol 1-Y) (x1073s71)

- Nominal value 1.0000 1.6000 5.0000 3.5000

102 Estimated value 1.0029 1.0280 5.0042 3.4854

104 Estimated value 1.7680 0.2889 4.4483 29515

* Data set described in Table 4. The initial guesses for the state variables were x, = (0.00 0.00 0.005 0.0035 0.00). The initial variance

guess for the estimates was o2 =5x 1072,
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Tabic 7

Fitst—order rate constants for o-, m- and p-ABA at different pH values in a2 2% SDS medium

Svbstrates Ay (om) pH k+s5 ("1 x107%) k(s~!1x1073)"
m-ABA 360 3.90 8.16 + 0.40 924

p-ABA 368 3.90 1.67 +011 145

o-ABA 370 3.80 448 3+ 0.08 4.67

m-ABA 360 3.80 714 £ 007 828

? Obtained from three solutions with different substrate concentrations by the Powell algorithm.
® Mean value refined by the extended Kalman filter.
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Fig. 5. Kinetic curves of the coupling reaction (left) and azodye spectra (right) for 5.06 X 10 mol1™' o-ABA and m-ABA.

‘Table 8
Composition of the binary mixtures
Experiment No. m-ABA /p-ABA (X 10~° mol 1~ ' )Experiment No. o-ABA /m-ABA
(x107¥ moll™")
1 1.839 1.945 14 2299 2.299
2 3.219 1.945 15 2299 3.679
3 4.598 1.945 16 2299 5.058
4 1.839 3.403 17 3.679 2299
5 3.219 3.403 18 3.679 3.679
6 4.598 3.403 19 3.679 5.058
7 1.839 4.861 20 5.058 2299
8 3.219 4.861 21 5.058 3.679
9 4.598 4.861 2 5.058 5.058
10 2759 3.889 23 3.219 2,759
11 3.679 2917 24 4.139 4.599
12 2,299 3.403 25 4.139 2759
i3 3.219 2.431 26 3.219 4.599
Initial values of the parameters for the Kalman filter and Powell algorithm ¢
Linear Kalman filter: xq = (0.00 0.00 0.00) R=10"° ol=5x10""%
Extended Kalman filter: xo = (0.00 0.00 k, &, 0,00) R=10? ol=5x10"*
Powell algorithm: xgp = (0.00 0.00 &, &k, 0.00)

Step size = (107 10-4 10=5 10~% 10-3)

Calihration samples for PLS
Mixtures No. 1, 3, 5, 7 and 9 for m- ABA /p-ABA and mixtures No. 14, 16, 18, 20 and 22 for 0-ABA /m-ABA.

* The meaning of the symbols is given in Table 2. For the extended Kalman filter, the initial guesses of &, and &, are given in the last
column of Table 7.
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reactions were too slow, and at pH higher than 5.5,
some of the analytes coupled in less than 1 min,
which was not suitable for the manual mixing proce-
dure used. Also, at pH values higher than 5.5, the
absorbance of the reagent blank was large. This has
been shown to be due to hydrolysis of the diazonium
ion to yield a phenol which couples with the excess
reagent [37]. Also, at higher pH valves, the azo dyes
were unstable, and the absorbance decreased rapidly
after reaching a maximum. It was observed that the
addition of SDS alleviated this problem and, there-
fore, a final concentration of 2% SDS was used,

To evaluate the rate constants, three solutions of
each substrate at increasing concentrations were pre-
pared, the procedure given above was applied, and
the rate constants were calculated from the corre-
sponding kinetic curves by the Powell algorithm and
the extended Kalman filter, which were implemented
to treat the data given by a single component. The
results of the Powell algorithm were used as the
initial values to be refined by the extended Kalman
filter. The calculated rate constants were used in the
computation afterwards. As expected, the results
given in Table 7 showed a large variation of the rate
constants with pH, The kinetic curves and the spectra

Table 9

of the azo dyes obtained with two o0-ABA and
m-ABA solutions are shown in Fig. 5. It can be
ohserved that the m-ABA azodye was not stable,

4.2.2. Resolution of binary mixtures

The spectral-kinetic data of two series of binary
mixtures were obtained in the conditions given in
Table 7. The data were treated by the four methods,
and the results were evaluated using three different
number of wavelengths (1, 6 and 41 for m-ABA /p-
ABA mixtures, and 1, 6 and 36 for -ABA /m-ABA
mixtures). The initial parameters provided to the
Powell and the Kalman filter algorithms are listed in
Tablc 8. The nominal compositions of the mixtures
are also given in Table 8. The AARE values of both
components for the two series of binary mixtures and
for the different methods are listed in Table 9. For
the Powell algorithm, the estimated error was ex-
tremely large for some of the mixtures. For PLS,
since five mixtures were used as the calibration
samples, only the results of the remain eight mix-
tures were used in the computation of AARE. Except
with the Powell algorithm, the m-ABA /p-ABA mix-
tures gave satisfactory results with all the methods,
even when only a single wavelength was used. The

Ertors { AARE%, species 1/species 2) of the estimated concentrations of the binary mixtures using different algorithms

m-ABA/p-ABA

No. of wavelengths used 1 [ 41
Powell - 56,/20 61/78
Linear Kalman filter 271729 29/54 34/46
Extended Kalman filter 8.3/4.6 40738 3.5/36
PLS 2.6/18 26/1.7 28/19
0-ABA /m-ABA

No. of wavelengths used 1 6 36
Powell - - -2
Linear Kalman filter 23/23 14/13 8.0/9.1
Extended Kalman filter 21/25 4.1/33 24733
PLS i3/17 28/2 25727

aExtremely Jarge absurd values.

Fig. 6. Added (full bars) and estimated (grey bars) concentrations for th¢ 0-ABA and m-ABA mixtures with the linear (upper part) and
extended Kalman filter (middle part) and with PLS (Inwer part). In each plot, the upper half are the concentrations of species 1 and the
lower half shows the concentrations of species 2. In each figure, from left to right are the results with 1, 6 and 36 wavelengths, and in each
plot, the bars from left to right are the thirteen mixtures in the order given in Table 8. Attention should be paid to the abserce of the bars

referring to the calibration mixtores for PLS,
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incorporation of more wavelengths did not improve
the results, because of the relative large difference of
the rate constants for the components in this system.

This was not the case for the o-ABA/m-ABA
mixtures. The single wavelength evaluation for the
o-ABA /m-ABA mixtures gave much higher error
than that in the m-ABA /p-ABA mixtures, and the
increase of the number of wavelengths improved the
results remarkably. The estimated concentrations for
0-ABA /mi-ABA mixtures by different methods (ex-
cept the Powell algorithm) are shown in Fig. 6,
together with the nominal values of the concentra-
tions. It can be deduced that PLS gave better resuits
than the Kalman filters, and that the extended Kalman
filter performed better than the linear one for these
experimental data. The resuits of 0-ABA/m-ABA
mixtures suggested that more wavelengths should be
used in practice for the linear Kalman filter com-
pared to the cxtended filter. The more wavelengths
used, the less the influence of the errors in the rate
constants. Moreover, the influence of the number of
wavelengths on the extended Kalman filter is not so
significant as in the linear Kalman filter (also refer-
ring to Fig. 3B), which was attributed to the correc-
tion of the rate constants.

5. Conclusions

Firstly, accuracy improves with the aumber of
wavelengths used, especially when the difference of
rate constants is small. Secondly, the Powell algo-
rithm gives the worst results. The different perfor-
mance of the Powell atgorithm and the Kalman filter
might be attributed to the different minimization
criteria adopted (sum of the squares of the residuals
of the signals for the former and mean square error
of the concentrations for the latter) and to the differ-
ent manner in the treatment of the data { batch for the
former and recursive for the latter). Modification in
the one dimensional searching and use of some
constraints to limit the parameters to be optimized
might be helpful to abtain good results and to reduce
the computation time. Comparing the linear and
extended Kalman filters, the latter performs some-
what better than the former one. This could be
attributed to the correction of the rate constants in
the extended Kalman filter. The linear Kalman fitter

also showed a certain potential to compensate the
variation of the rate constants when multiple wave-
Iengths were used. This is due to the decrease of the
influence of the error in the rate constanis as more
spectral information is incorporated. Though the hard
modelling methods like thc Kalman filter can offer
reliable results under certain conditions, the require-
ment of relatively accurate values of the initial esti-
mates of the parameters and of other initial values to
invoke the algorithm may bring some difficulty in
practice. On the other hand, the soft modelling meth-
ods like PLS can provide quite favourable results
almost without any spectral and kinetic knowledge
about the system. The only requirement is that the
relationships between the signal and the evaluated
parameters should be linear. With PLS, when ade-
quate calibration is performed, the results in terms of
accuracy and computation time are as good as with
the Kalman filiers. Thus, they would be more conve-
nient for the practical application.

Acknowledgements

Work supported by the DGICYT of Spain, Project
PB93/355. Y.L. Xie is grateful for a postdoctoral
grant from the Ministry of Education and Science of
Spain.

References

[1] B.M. Quencer and S.R. Crouch, CRC Crit. Rev. Anal.
Chem., 24 (1993) 243,
[2] M. Silva, Analyst, 118 (1993) 681.
[3] HB. Mark, Jr. and G.A. Rechnitz, Kinetic in Analytical
Chemistry, Intetscience, New Yorl:, 1968.
[4] H.A. Mottols, Kinetic Aspects of Analytical Chemistry, Wi-
ley, New York, 1988.
5] 1. Havel, J.L. Gonzilez and M.N. Moreno, React. Kinet.
Catal. Lett., 39 (1989) 41.
[6] I]. Baeza-Bacza, G. Ramis-Ramos, F. Pérez Pl and R.
Valero Molina, Analyst, 115 (1990) 721.
[7] F. Pérez P13, J.J. Baeza-Baeza, (3. Ramis-Ramos and J.
Palou, Comput. Chem., 12 (1991} 283,
{8] S.D. Brown, Anal. Chim. Acta, 181 (1986) 1.
9] S.C. Rutan and S.D. Brown, Anal. Chim, Acta, 160 (1985)
9.
[10] Y.L. Xie, LE. Wang and RQ. Yu, Anal. Chim, Acta, 269
(1992) 307.
[11] P.D. Wentz¢ll, M.I. Kazagaonis and S.R. Crouch, Anal.
Chim. Acta, 224 {1989) 263.



Y.-L. Xie et al. / Analytica Chimica Acta 321 (1996) 75-95 95

[12]1 W.H. Lewis, Jr. and 5.C. Rutan, Anal. Chem., 63 (1991)
627.

[13] E. Forster, M. Silva, M. Otto and D. Pérez-Bendito, Anal.
Chim. Acta, 274 (1993) 109.

[14] R. Xiong, A. Velasco, M. Silva and D. Pérez-Bendito, Anal.
Chim. Acta, 251 (1991) 313,

[15] A. Vclasco, R. Xiong, M. Silva and D. Pérez-Bendito,
Talanta, 40 (1993) 1505.

[16] S.C. Rutan and S.D. Brown, Anal. Chim. Acta, 167 (1985)

23.

[17] CA. Corcoran and S.C. Rutsn, Anal. Chem., 60 (1988)
1146.

(18] CA. Corcoran and S.C. Rutan, Anal. Chem., 60 (1988)
2450.

[19] S.C. Rutar, C.P. Fitzpatrick, LW. Skoug, W.E, Weiser and
H. Pardue, Anal. Chim. Acta, 224 (1989) 243,

[20] R. Jiméne:z-Pricto, A. Velasco, M. Silva and D. Pérez-Bend-
ito, Talanta, 40 (1993) 1731,

[21] M. Gui and S.C. Rutan, Anal. Chem., 66 (1994) 1513.

[22] B.M. Quencer and S.R. Crouch, Analyst, 118 (1993) 695.

[23] B.M. Quencer and S.R. Crouch, Anal. Chem., 66 (1994) 458.

[24} V. Gonzilez, B. Moreno, D. Sicilia, S. Rubio ard D. Pércz-
Bendito, Anal. Chem., 65 (1993) 1897.

[25] AN. Diaz and J.A.G. Garcia, Ansl. Chem., 66 (1994) 998,

[25] M. Blanco, 3. Coetlo, H. Tiuniage, S. Mi-poch, J. Riba and
E. Rovira, Talanta, 40 (1993) 261.

[27] J. Havel, F. Jiméncz, R.D. Bautista and J1J. Arias-Letin,
Analyst, 118 (1993) 1355,

[28] Y.L. Xic, J.J. Bacza-Bacza and G. Ramis-Ramos, Chemom.
Intell. Lab. Syst., 27 {1995) 211.

129] S. Wold, P. Geladi, K. Esbencen and 1. Obman, J. Chemom.,
1(3987) 41,

[30] AK. Smilde, Chemom. Intell. Lab, Syst., 15 {1992) 143,

[31} A K. Smilde and D.A. D bos, J. Ch » 5 (1991) 345,

32] AK. Smilde, P.H. Van D. Graaf, D.A. Doornbos, T. Stcerme-
man and A. Slcurink, Anal. Chim. Acta, 235 (1990) 41.

[33] AK. Smilde and D.A. Doombas, J. Chemom., 6 (1992) 11.

[34] S.5. Rao, Optimization, Theory and Applications, 2ad cda.,
Wiley Eastera Limited, 1985,

[35] S. Wold, K. Esbensen and P. Geladi, Chemom. Iztel. Lab.
Syst., 2 (1987) 37,

[36] G. Ramis-Ramos, J.S. Esteve-Romero and M.C, Garcia Al
varez-Coque, Anal, Chim. Acta, 223 (1989) 327,

[37] 1S. Esteve-Romero, M.C. Garcia
Ramis-Ramos, Talanta, 38 (1991} 128S.

and G.



