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Abstract 

Kinetic-diode array spectrophotometric detection, as well as other multichannel techniques when used in non-equilibrium 
conditions, constitute second-order instrumentation. The second-order response provided will be bilinear, under certain con- 
ditions even trilinear, thus allowing the use of the generalized rank annihilation method (GRAM) and the trilinear decompo- 
sition method (TLD). Both numerically simulated and experimental data were used to evaluate the performance of these cali- 
bration techniques. The conditions in which the ‘second-order advantage’ (the possibility of quantifying the analytes in the 
presence of unknown reactions or interferences) is preserved were investigated. The coupling reaction of diazotized sulfanil- 
amide with p-, o- and m-amino benzoic acid, and with orciprenaline, to give azodyes was monitored. Binary mixtures of 
these substrates with different values of the rate constant ratio, and with various degrees of spectral overlap, were resolved. 
The advantages and limitations of higher-order data analysis techniques such as GRAM and TLD for the treatment of sec- 
ond-order kinetic data are discussed. 
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1. Introduction 

Modern analytical chemistry has benefited from 
the development of second- and higher-order instru- 
mentation, that is, instruments capable of providing 
bi- and multi-dimensional data arrays, which usually 
results in a substantial improvement of the analytical 
capability [l]. In the last two decades, second-order 
instruments and techniques have become common- 
place in analytical chemistry laboratories. Second- 
order instrumentation relies on two separated analyti- 
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cal mechanisms linked in series such that the signal 
of the latter is modulated by the former. A second- 
order tensor or a data matrix is generated for each 
single measurement run. This is the case for the so- 
called hyphenated techniques such as LC/UV-VIS, 
LC/MS, GC/MS, GC/mIR, MS/MS and 2D- 
NMR [2,3], and other techniques such as two-dimen- 
sional excitation-emission fluorometry [2,3], multi- 
channel detection spectroscopic titration [4] and flow 
optical sensors 1561. 

In a bilinear second-order device, that is, when the 
instrument response for a single analyte in an inter- 
ference-free sample is a rank one matrix [7], calibra- 
tion can be carried out using only one standard con- 
sisting of just the analyte, and the prediction will be 



216 Y.-L. Xie et al. / Chemometrics and Intelligent Laboratory Systems 32 (1996) 215-232 

robust to the presence of uncalibrated interferences way principal component regression (PCR) [29] and 
[8]. Thus, calibration and sample measurements can multi-way partial least squares (PLS) [30,31] have 
be performed in the presence of unknown compo- been applied to quantitative calibration using 
nents that are not included in the calibration model. second-order kinetic data. On the other hand, an at- 
This merit is usually called ‘the second-order advan- tempt was made for the simultaneous qualitative and 
tage’ [9,10]. Several algorithms capable of exploiting quantitative resolution of mixtures based on factor 
‘the second-order advantage’ using third-order data analysis of a second-order kinetic response from a 
arrays provided by bilinear second-order instruments single sample [32]. However, in the application of the 
have been described [ 11. The generalized rank annihi- mentioned methods the model should accurately de- 
lation method (GRAM) [ll], parallel factor analysis scribe the system behaviour for quantitative calibra- 
(PARAFAC) [12] and trilinear decomposition (TLD) tion and the qualitative resolution may not be unique 
[13] are most widely used. owing to the rotational ambiguity of factor analysis. 

Rank annihilation factor analysis was originally 
developed by Ho et al. as an iterative procedure [14]. 
It was modified by Lorber to yield a direct solution 
of a standard eigenvalue problem [15,16]. Sanchez 
and Kowalski extended the method to the general case 
of several components that are not necessarily pre- 
sent in both the calibration and the unknown sam- 
ples, obtained the solution by solving a generalized 
eigenproblem and called the method GRAM [ll]. 
Algorithm modifications and theoretical studies of 
GRAM are still underway [17-221. The applicability 
of GRAM has been demonstrated by the treatment of 
third-order data arrays generated by hyphenated 
chromatography [23,24], excitation-emission fluores- 
cence [20,21] and flow optical sensors [5]. 

The second-order response of a multiwavelength 
detection kinetic process would be bilinear, and un- 
der certain conditions a trilinear data array can be 
obtained from a series of calibration standards at in- 
creasing analyte concentrations. Thus, GRAM and 
TLD can be applied to obtain the unique resolution 
of the third-order kinetic data array. Qualitative ki- 
netic and spectral profiles and quantitative concentra- 
tion information of the analytes can thus be retrieved 
simultaneously in the presence of unknown co-exist- 
ing interferences. 

When a second-order instrument is used, calibra- 
tion is performed at several standard concentrations 
and thus a third-order tensor is usually obtained. If a 
third-order data array follows a trilinear model [13], 
a unique decomposition can be obtained by direct tri- 
linear decomposition (TLD). Actually, GRAM is a 
special case of TLD, where the third-order tensor 
consists of only two bilinear matrices. There are not 
many applications of TLD in the literature. Recently, 
Li et al. [25] and Booksh et al. [6] proposed modified 
algorithms for TLD. 

When the signal of a first-order instrument is 
modulated by a chemical kinetic process, a second- 
order data array can be obtained, e.g. when a kinetic 
process is monitored by a diode-array UV/VIS de- 
tector. Recently, attention has been paid to the use of 
kinetic processes to increase the order of the data ar- 
rays. For the purpose of quantitative calibration, the 
linear and extended Kalman filter techniques have 
been applied to the treatment of multiwavelength ki- 
netic data (second-order data) [26-281. Also, multi- 

The aim of this work is to examine the applicabil- 
ity of high-order data analysis techniques such as 
GRAM and TLD to the kinetic analysis field, and to 
discuss the advantages and limitations of these ap- 
proaches applied therein. As far as we know, the ma- 
jority of research based on second-order response 
emphasized the use of the hyphenated chromato- 
graphic system. Although in the case of both the hy- 
phenated chromatography and kinetic systems, cou- 
pled with a diode-array detector, the experiments in- 
volve the periodical acquisition of spectra for a sin- 
gle sample which changes over time, the nature of 
these changes are different. For the former case, no 
chemical reaction takes place and it is the molecular 
interaction of the solutes in the sample with both the 
mobile and the stationary phases that makes the 
amount of solute reaching the detector vary with time. 
The continuous nature of chromatographic peaks im- 
plies sequential appearance and disappearance of the 
concentration profiles of the solutes, which makes 
chemometric tools a useful supplement to separate 
incompletely resolved chromatograms of complex 
samples. For multicomponent kinetic systems, chem- 
ical reactions between the analytes and a common 
reagent take place, the amounts of spectrally active 
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species changing continuously with time following 
different reaction rates. In both cases, a wavelength- 
time second-order response matrix is acquired for 
each sample. However, kinetic curves present a rather 
monotonous variation of the signal with time starting 
from a point. This implies a stronger collinearity in 
the time order when compared to the sequential ap- 
pearance and disappearance of peaks of the chro- 
matographic profiles. 

To our knowledge, there is no study in the litera- 
ture concerning the treatment of second- or third- 
order kinetic data. In this paper, both numerically 
simulated and real experimental data were processed. 
The coupling reaction of diazotized sulfanilamide 
with the o-, p- and m-amino benzoic acids, and with 
orciprenaline, was used as a model system. Binary 
mixtures of these compounds with different ratios of 
the rate constants, and various degrees of spectral 
overlap of the coloured products, were measured to 
provide the second-order data arrays. The initial con- 
centrations of the analytes in the presence of un- 
known interferences were determined together with 
their related kinetic curves and spectra. 

2. Experimental 

2. I. Apparatus 

An HP 8452A diode array spectrophotometer 
(Hewlett-Packard, Palo Alto, CA, USA) provided 
with a 1 cm quartz cell was used in the kinetic mea- 
surements. The pH values of buffer solutions were 
adjusted with a Crison MicroPH 2001 pH meter pro- 
vided with a combined glass electrode. A 500 ~1 pis- 
ton pipette was used to inject a reagent to start the 
reactions. A 486 IBM compatible microcomputer was 
used to control the spectrophotometer and to acquire 
and treat the data. Data acquisition began 10 s after 
starting the reactions. The data files produced by the 
HP 89531A operation software (Hewlett-Packard) 
were processed by the authors’ own programmes 
which were written in MATLAB (MathWorks, Sher- 
born, MA, USA). 

2.2. Reagents and solutions 

Reagent grade o-, m- and p-amino benzoic acid 
(ABA) (Merck, Darmstadt, Germany), orciprenaline 

(ORC) (kindly donated by Boehringer-Ingelheim, 
Barcelona, Spain), sulfanilamide (Sigma, St. Louis, 
MO, USA), sulfamic acid, sodium nitrite, sodium 
dodecyl sulphate (SDS) (Fluka, Buchs, Switzerland), 
and citric acid (Panreac, Barcelona, Spain) were used. 
Distilled demineralized water (Barnstead, Sybron, 
Taunton, MA, USA) was used throughout. 

To buffer the solutions, citric acid and variable 
amounts of a sodium hydroxide solution were added. 
The final buffer concentration was 0.25 mol l- ’ in all 
cases. The stock solutions of the substrates were pre- 
pared by dissolving 17.5 mg o-ABA, 17.5 mg m- 
ABA, 18.5 mg p-ABA and 56.3 mg ORC in 1 ml 
ethanol, and diluting with water to 50 ml. The 4 X 

10m2 mol 1-l sulfanilamide stock solution was pre- 
pared in 0.3 mol 1-l HCl. The 0.2 mol 1-l NaNO,, 
0.5 mol 1-l sulfamic acid and 20% SDS solutions 
were made with water. 

The 1 X lo-’ mol 1 - ’ diazonium ion solution was 
prepared as follows: 12.5 ml sulfanilamide was intro- 
duced into a 50 ml volumetric flask, and 15 ml 
NaNO, was added. The mixture was allowed to react 
for 10 min, then 15 ml sulfamic acid was added to 
destroy the excess nitrite, and after another 15 min the 
solution was made up to the mark with water. The 
diazonium ion solution was renewed daily. 

2.3. Optimization of the reaction conditions 

To test the method the coupling reaction of diazo- 
tized sulfanilamide with o-, m- and p-amino benzoic 
acid (ABA), and with orciprenaline (ORC), to give 
coloured azodyes was used. Since only the basic form 
of the ABAs (the non-ionic free amines) is suffi- 
ciently activated to couple with diazonium ions, the 
reaction rate is strongly affected by pH [33]. We have 
found that, at pH lower than 3.5, the reactions were 
too slow, and at pH higher than 5.5, some of the ana- 
lytes coupled in less than 1 mitt, which was not suit- 
able for the manual mixing procedure used. On the 
other hand, at pH values higher than 5.5, the ab- 
sorbance of the reagent blank was large. This has 
been shown to be due to hydrolysis of the diazonium 
ion to yield a phenol which couples with the excess 
reagent [34]. In addition, at higher pH values, the azo 
dyes were unstable, and the absorbance decreased 
rapidly after reaching a maximum value. For the 
convenience of manual operation, a compromise 
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Fig. 1. Kinetic curves (left) and spectra (right) for the following binary mixtures: upper part, ORC ( A ) and o-ABA ( 0 ); middle part, p-ABA 
(A ) and m-ABA ( 0 ); lower part, o-ABA ( A ) and m-ABA ( 0 1. 



Y.-L. Xie et al. / Chemometrics and Intelligent Laboratory Systems 32 (1996) 215-232 219 

should be made between suitable reaction rate and 
avoidance of hydrolysis of the diazonium ion. Three 
pH values within these two extremes, i.e. 3.80, 3.90 
and 4.10 as indicated in Table 1, were adopted for 
carrying out the experiments. Furthermore, it was 
observed that the addition of sodium dodecyl sul- 
phate (SDS) can stabilize the azo dyes, therefore a fi- 
nal concentration of 2% SDS was used. 

Three binary combinations of substrates, i.e. o- 
ABA/ORC, m-ABA/p-ABA and o-ABA/m-ABA, 
were used to observe the kinetic process under the 
conditions given in Table 1 and to provide experi- 
mental data. Under the adopted conditions, the sub- 
strates in each binary combination possessed differ- 
ent values of the rate constant ratio and the product 
spectra overlapped seriously. The kinetic curves and 
the spectra of the azodyes are shown in Fig. 1. The 
monitored wavelength regions were from 350 to 444 
nm for o-ABA/ORC, from 350 to 430 nm for m- 
ABA/p-ABA and from 350 to 420 nm for o- 
ABA/m-ABA. At the monitored wavelengths the 
analytes do not absorb, and the diazotized sulfanil- 
amide has a very low molar absorptivity. Further, the 
absorbance due to the diazonium ion is maintained at 
an almost constant value owing to the large reagent 
concentration in relation to the analyte concentra- 
tions. For this reason, each binary system contained 
only two significant spectrally active species. 

Table 1 also lists the rate constants of the sub- 
strates which were evaluated with a series of three 
single component solutions (Nos. 14 to 19 in Table 
2) assuming that first order was followed. The Pow- 

Table 1 
First-order rate constants for o-, m-, and p-ABA, and ORC at dif- 
ferent pH values in a 2% SDS medium a 

Binary Substrate A,,, pH k f sk 
mixture (nm) (s-l x lo-3)b 

I o-ABA 370 4.10 6.31+ 0.12 
ORC 406 4.10 1.20 f 0.03 

II m-ABA 360 3.90 8.16 f. 0.40 
p-ABA 368 3.90 1.67dzO.11 

III o-ABA 370 3.80 4.48 f 0.08 
m-ABA 360 3.80 7.14 f 0.07 

a ABA, amino benzoic acid; ORC, orciprenaline. 
b Obtained from three single component solutions with increasing 
substrate concentrations (concentrations given in Table 2, experi- 
ments Nos. 14 to 19). 

Table 2 
Composition of the binary mixtures 

Experi- o-ABA/ORC m-ABA/p-ABA o-ABA/m-ABA 
ment (X10-’ mall-‘) (X10-5moll-‘) (X10m5 mall-‘1 
No. a 

1 2.759/3.456 1.839/1.945 2.299/2.299 
2 4.139/3.456 3.219/1.945 2.299/3.679 
3 5.518/3.456 4.598/1.945 2.299/5.058 
4 2.759/5.184 1.839/3.403 3.679/2.299 
5 4.139/5.184 3.219/3.403 3.679/3.679 
6 5.518/5.184 4.598/3.403 3.679/5.058 
7 2.759/6.912 1.839/4.861 5.058/2.299 
8 4.139/6.912 3.219/4.861 5.058/3.679 
9 5.518/6.912 4.598/4.861 5.058/5.058 

10 3.679/4.320 2.759/3.889 3.219/2.759 
11 3.679/6.048 3.679/2.917 4.139/4.599 
12 4.599/4.320 2.299/3.403 4.139/2.759 
13 4.599/6.048 3.219/2.431 3.219/4.599 
14 2.759/0.000 1.839/0.000 2.299/0.000 
15 4.139/0.000 3.219/0.000 3.679/0.000 
16 5.518/0.000 4.598/0.000 5.058/0.000 
17 0.000/3.456 0.000/1.945 0.000/2.299 
18 0.000/5.184 0.000/3.403 0.000/3.679 
19 0.000/6.912 0.000/4.861 0.000/5.058 

a Each mixture from Nos. 14 to 19 was used once as the calibra- 
tion sample to resolve mixtures from Nos. 1 to 13 with GRAM; 
either mixtures from Nos. 14 to 16 and from Nos. 17 to 19 were 
used as calibration samples to resolve mixtures from Nos. 1 to 13 
and mixtures from Nos. 1 to 9 were used as the calibration sam- 
ples to resolve mixtures from Nos. 10 to 13 with TLD. The errors 
of the estimated concentrations are given in Tables12-14. 

ell algorithm was used to compute the rate constants. 
The occurrence of hydrolysis of the product which is 
observed for m-ABA in Fig. 1 was neglected in the 
computation of rate constants. 

2.4. Procedure used to obtain the experimental data 

For each binary combination, the series of single 
and mixed solutions of Table 2 were prepared by in- 
troducing aliquots of the corresponding stock solu- 
tions, 20 ml buffer solution and 2.5 ml SDS into a 25 
ml volumetric flask, and the volume was completed 
with water. A 2.25 ml volume was transferred into a 
dry 1 cm quartz cell, the reaction was started by in- 
jecting 0.25 ml diazonium ion solution, and a key- 
board button was simultaneously pressed to start the 
data acquisition period (t = 0). Mixing was facili- 
tated by bubbling the solution in the cell four times 
with the piston pipette. The spectra were scanned ev- 
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ery 30 s, from t = 10 s to t = 910 s. Each spectrum 
was acquired in the monitored wavelength region 
mentioned above with a 2 nm resolution. The blank 
was prepared in the same way in the absence of the 
substrate. The blank absorbance matrix was always 
subtracted from the sample absorbance matrices be- 
fore processing the data. For each solution of the o- 
ABA/ORC, m-ABA/p-ABA and o-ABA/m-ABA 
binary mixtures, a 48 X 31, 41 X 31 and 36 X 31 
wavelength-time data matrix was obtained, respec- 
tively. Owing to the perturbations and noise, the 
spectra corresponding to the first two time points 
were rejected in the computation. Finally, the initial 
concentrations of the analytes were estimated using 
GRAM and TLD, and the retrieved kinetic curves and 
spectra were compared with those measured experi- 
mentally. 

ucts, i.e. the reactants are all taken as transparent at 
the monitored wavelengths, and that the absorbances 
are additive and follow the Lambert-Beer law, we 
can write the response of a kinetic reaction moni- 
tored with a diode-array detector as: 

Ai,j = C (1 - e-k’t’)CISj,l 

I=1 

where Ai,j is the change of absorbance of the mix- 
ture at time ti (i = l,...,Z), and at wavelength hj (j 
= l,...,J) with respect to the change observed at the 
same time and wavelength values for the blank solu- 
tion, k, is the rate constant corresponding to species 
C, (I = l,...,L), sj,r is the sensitivity (the molar ab- 
sorptivity multiplied by the optical pathlength) of 
product P, at Ai, and cI is the initial concentration 
of species C,. For a deduction of Eq. (21, see, e.g., 
Connors [35]. Eq. (2) can be rewritten as: 

3. Kinetic data structure L 

A = c k,c,sT = KCST 

3.1. Nomenclature 
I=1 

Lowercase bold characters are used for column 
vectors, uppercase bold characters for second-order 
tensors (or two-way matrices), and underlined italic 
uppercase bold characters for third-order tensors (or 
three-way matrices). The transpose of a matrix or a 
vector is represented by the superscript T and the in- 
verse of a matrix is signified by the superscript ‘ - 1’. 
Unless otherwise stated, lowercase and uppercase 
plain characters are used for scalars and as running 
indices, and also to indicate the number of the di- 
mensions of the vectors and matrices. 

where A is an I X J matrix containing the wave- 
length-time information of the kinetic system, k, is 
a vector containing the kinetic information for the Zth 
component whose generic element is [l - 
exp(- k,ti)l, and s[ is the sensitivity vector of prod- 
uct PI. Thus, K (= {k,)) is an Z X L matrix which 
contains the kinetic information of the analytes (one 
domain of the second-order instrument), S ( = {s,}) is 
a J X L matrix containing the spectral information of 
the absorbing products of the analytes (another do- 
main of the second-order instrument), and C is a di- 
agonal matrix with the concentration of the analytes 
as its diagonal elements. 

3.2. Bilinear@ and trilinearity consideration in 
chemical kinetics 

Let us suppose a mixture contains L active sub- 
strates, C, (I = l,..., L), which couple with a common 
reagent, R, following a first- or pseudo-first order re- 
action: 

Cl+R-+Pl (1) 

Assuming that the change of absorbance is due 
only to the change in the concentration of the prod- 

In the chemometric literature, for a second-order 
device, if the rank of the response of a sample con- 
taining only a pure analyte is one, then the second- 
order device and the data matrix obtained are both 
called bilinear. In this sense, the second-order kinetic 
response matrix expressed as in Eq. (3) and the data 
matrices obtained under the adopted experimental 
conditions can be regarded as bilinear. However, the 
rank of a reaction system is not always trivial [36]. 

Usually, to construct a prediction model, several 
(say N) samples of known composition and different 
concentrations of the substrates should be measured, 

L 

(2) 
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and then N I X .Z bilinear matrices would be ob- 
tained: 

A, = KC,ST (44 

A, = KC,ST (4b) 

A, = K&ST (44 

Under the assumption of first or pseudo-first reac- 
tion mechanism, K and S in the bilinear matrices of 
Eq. (4) will be the same for the N samples with dif- 
ferent concentration ratio of the substrates. Stacking 
these N bilinear matrices into a N X Z X .Z three-way 
data array, the following trilinear model is obtained: 

A,,j,j = i (1 - e-k”‘)c,,lsj,, 
I=1 

(5) 

or: 
L 

A= c k,@c,@s, - 
I=1 

where A is an N X Z X J third-order response tensor 
with generic element A,,i,j, and cI is the concentra- 
tion vector of the lth analyte in the N samples, and 
the symbol @ represents the tensor product (outer 
product) [37]. 

It is our purpose to determine the initial concen- 
trations of the reactants and their related kinetic 
curves and spectra based upon the third-order tensor 
A without explicit knowledge about the kinetic sys- 
tem. 

Eqs. (3) and (6) are derived with the requirement 
that the kinetic reaction follows the first-order mech- 
anism of Eq. (1). However, in some other instances 
and so far as the Lambert-Beer and additivity laws 
are followed, similar expressions would also be ob- 
tained. For example, if the products are not stable and 
are hydrolysed following a parasitic first- or 
pseudo-first order law: 

C,+R-,P, (7a) 

Pl -+D, (RI 

a response model similar to Eq. (2) can be derived 
[35]: 

(8) 

where k, and Cl represent the first-order rate con- 
stants for the formation and hydrolysis of the P, 
products, respectively, and where we have also as- 
sumed that the D, final products do not absorb. In 
both these response models defined by Eqs. (2) and 
(8), the kinetic behaviour, the spectral response and 
the concentrations are independent from one another, 
and thus the general bilinear and trilinear models ex- 
pressed by Eqs. (3) and (6) are also valid. 

Let us now consider a more complex case in which 
some components of the mixture react with a com- 
mon reagent R following a second-order law. The 
response model is [35]: 

-1 

‘lsj,i 

where k, is the second-order rate constant of the ana- 
lyte C,, and where the same presumption that only the 
products absorb is assumed. 

According to Eq. (9), the response of a single 
standard is a rank one matrix, but the trilinear re- 
sponse model of Eq. (6) cannot be derived because 
the time-dependent kinetic profile is also dependent 
upon the initial concentration of the reactants. Thus, 
the kinetic profile for each substrate will be different 
for the sample with varied concentrations of the sub- 
strate, i.e. the bilinear matrices from different sam- 
ples will have different bases. However, if we as- 
sume that only the unknown interferences follow the 
second-order law of Eq. (9), and that the species of 
interest follow the model of Eqs. (2) or (8) or any 
other linear response-concentration relationship, cal- 
ibration with the GRAM and TLD methods by using 
the generalized standard addition method with a fixed 
background will be still possible [38]. The contribu- 
tion of the second-order component to the response 
will be the same for all the data matrices obtained 
before and after the standard additions, and the over- 
all response will still follow the trilinear model of Eq. 
(6). Obviously, the meaning of k for the interfer- 
ences will be different from that of the analytes. 

4. Algorithm of GRAM and TLD 

The algorithms of GRAM and TLD have 
been documented extensively elsewhere 
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[5,6,11,13,18,21,25]. Here the algorithm of Wilson et 
al. [18] for GRAM, and the modified algorithm of 
Booksh et al. [6] for TLD have been adopted, and 
only a brief presentation is given below. 

In the GRAM, a bilinear matrix, N, obtained with 
a single standard is used for calibration, and the ana- 
lyte concentrations in an unknown sample are esti- 
mated through its corresponding bilinear matrices M 
together with N. GRAM solves the generalized 
eigenproblem: 

M’I’ = N’I’A (IO) 

A=C,C,’ (II) 

where W and A are matrices of eigenvectors and 
eigenvalues, and C, and C, are diagonal matrices 
whose diagonal elements are the concentrations of the 
analytes in the corresponding sample. 

The QZ algorithm [39] can be used to solve the 
generalized eigenproblem. However, to apply the QZ 
algorithm N and M should be square matrices, and 
thus it is necessary to transfer the usual rectangular 
N and M matrices into square matrices. To accom- 
plish such transformation, N and M must be pro- 
jected into a common base set. According to Wilson 
et al. [ 181, two sets of orthonormal vectors P ( = {pi}) 
and Q ( = (q J> that are base sets of the joint column 
and row spaces, respectively, of N and M were de- 
termined from the adjoint matrices (MlN) and (M/N) 
by the use of singular value decomposition (SVD): 

(MEN) =p.s,.vT (12) 

= U . S, . QT (13) 

where P, V, U, and Q are singular vectors (eigenvec- 
tars), and S, and S, are matrices of singular values. 
Once P and Q are determined, M and N are pro- 
jected into a common base set: 

where L is the number of principal components re- 
tained to reconstruct the model. Ideally, L equals the 
number of intrinsic physical factors, i.e. the number 
of analytes. 

MPQ 
=pT.M.Q (14 

N pQ =PT.N.Q (15) 
Then, the eigenproblem in Eq. (10) can be solved via 
the QZ algorithm where M,, and N,, are substi- 
tuted by M and N: 

MPQ 4!=N,,4’4 (16) 
The estimate of the concentration in an unknown 

When U, V and W have been determined, the 
third-order tensor A is projected down to the (U, V, 
W) base sets, andThe projected tensor G which con- 
sists of two L XL matrices, G, and G,is obtained: 

N 

G, = c wn2(UT. A,. V) (2Oa) 
n=l 

G, = 5 wnl(UT. A,. V) 
sample, C,, can be obtained from the eigenvalue n=l 

matrix A and the concentration of the calibration 
sample C,. The estimated response matrices in both 
orders, X and Y (in kinetic analysis, they are K and 
S as expressed in Eq. (3)), can be calculated accord- 
ing to the equations given below: 

X=P(N,,+M,,)+ (17) 

Y = Q- (6-‘)T (18) 
TLD can be viewed as an extension of GRAM 

where multiple standards (say N) rather than a single 
standard are used. It is necessary to find two matri- 
ces that are representative of all the bilinear matrices 
and that meet the necessary condition to apply the 
GRAM. With the application of a Tucker-3 model, 
Sanchez and Kowalski [13] constructed two pseu- 
dosamples that are linear combinations of the N bi- 
linear response matrices, A, to A,, of the N sam- 
ples projected into a common row and column spaces. 
The steps to be followed are indicated next. 

The third-order tensor A in Eq. (6) is rearranged 
into three adjoint matrices a,}, (AJ and {AJ, where 
A,, are Z X J slices of A_, Ai are J X N slices of A 
and Aj are N X Z slices of A. The adjoint row, coF 
umn and tube spaces of theThird-order tensor A can - 
be determined by SVD: 

[A11AZlA31...LAN] =U;S;V,T; U=U,(ZxL) 

( I9a) 

[A&+&4,1.. . h,] = U, . S, . V,‘; V = U,( J XL) 

W) 

[A11AJA31...lAJ] =U,S,V,‘; W=U,(NX2) 

( I9c) 

(2Ob) 
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where G, and G, are L XL full rank square matri- 
ces. The next step is to solve the simultaneous eigen- 
problem of the two matrices G, and G,: 

G,‘Pa = G,‘I’* A, (21a) 

G;‘4, = G;‘&, Aa (21b) 

Here the q and A symbols are the eigenvectors and 
eigenvalues of the corresponding eigenproblems as 
calculated by the QZ algorithm. According to Booksh 
et al. [6], it is better to use only one of the solutions 
of Eqs. (21a) and (21b) to estimate the intrinsic phys- 
ical profiles, X and Y: 

Y=V+‘z)-’ X=U+G,.W, (22a) 

Y=V.G;+, X=U.(‘P;)-’ (22b) 

The calculation of X and Y from the same eigen- 
problem is said to be able to provide reliable calibra- 
tion results when imaginary eigenvectors are in- 
cluded in the solution of the eigenproblem and 
avoiding the occurrence of mismatched eigenvectors. 
The use of Eq. (22a) or Eq. (22b) depends on the 
value of the condition number of JIFa and Wb. The 
N X L matrix of the relative concentration ratios, C, 
can be estimated by a least squares procedure when 
X and Y have been computed: 

C=p.Q-’ (23) 

where 

(24) 

5. Simulation 

5.1. Mixtures of components following independent 
first-order reactions 

The spectra of the components were generated as 
Gaussian peaks, and the curves were constructed fol- 
lowing the first-order kinetic law. The response ten- 

Table 3 
Parameters used in the simulation of the data sets for mixtures of 
four components that follow first-order reactions in the absence of 
noise a 

Width of peaks (a ): 20 arbitrary units 
Wavelength range: 1 to 100 with intervals of 1 
Time range: 10 to 1210 s with 30 s intervals 
Variation of spectral overlap (peak positions in arbitrary units) 
Species 1 2 3 4 

38 46 54 62 
41 47 53 59 
44 48 52 56 
47 49 51 53 
48 49 50 51 

Variation of kinetic overlap (rate constants in s-l X 10m3) 
Species 1 2 3 4 

4.00 8.00 12.0 16.0 
4.00 6.00 8.00 10.0 
4.00 5.00 6.00 7.00 
4.00 4.50 5.00 5.50 
4.00 4.25 4.50 4.75 
4.09 4.10 4.20 4.30 

a The errors of the estimated concentrations were negligible (see 
text). 

sors of the mixtures were synthesized according to 
Eqs. (2) and (5). 

Up to four-component mixtures were generated for 
the noise-free case. The parameters used in the simu- 
lation are listed in Table 3. The width of the spectral 
peaks were fixed to a constant value of s = 20 arbi- 
trary units (2s = distance between the inflection 
points), and the number of points, which were evenly 
spaced along the spectral order, was 100. The dis- 
tances among peaks were shortened to increase the 
spectral overlap, and at the same time, the difference 
of the first-order kinetic rate constants among the 
components was reduced. A total of 30 different 
combinations of kinetic and spectral parameters was 
used in the simulation. The kinetic process was as- 
sumed to be monitored in the lo-1210 s time range 
with 30 s intervals. Thus a 100 X 41 data matrix was 
obtained for each mixture. The response of several 
mixtures and solutions of the isolated components, 
with increasing concentrations of the components, 
were generated for each combination of spectral and 
kinetic parameters. 

To obtain the simulated experiments, normally 
distributed random numbers were generated and 
added to the calculated data of the theoretical re- 
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sponse matrix of each assumed mixture. The stan- 
dard deviation of the noise was a percentage of the 
maximum absorbance value in the corresponding data 
matrix. First, two series of two-component mixtures 
that followed the model of Eqs. (2) and (5) were as- 
sumed. The parameters used for this simulation are 
summarized in Table 4. In one of the series, the 

spectral and kinetic parameters used in the simula- 
tion were fixed and only the standard deviation of the 
noise was changed. In the other series, the noise 
standard deviation was fixed and the spectral and ki- 
netic overlap were increased simultaneously by 
shortening the distance between the peaks and by ap- 
proaching the rate constant ratio of the two compo- 

Table 4 
Parameters used in the simulation of data sets for mixtures of two components that follow first-order reactions. Study of the influence of 
noise and overlap 

Series I: 
Width of peaks ( (T ): 
Wavelength range: 
Position of peaks: 
Rate constants: 
Time range: 

Variation of noise level 
Case No. 
Noise standard deviation a: 

Series II: 
Width of peaks (D ): 
Wavelength range: 

20 arbitrary units 
1 to 100 with intervals of 1 arbitrary unit 
30 and 60 for species 1 and 2, respectively 
3 X 10m3 and 6 X 1O-3 s-i for species 1 and 2, respectively 
10 to 1210 s with 30 s intervals 

1 2 
0.0050 0.010 

20 arbitrary units 
1 to 100 with intervals of 1 arbitrary unit 

3 
0.030 

4 
0.050 

5 
0.10 

Variation of spectral and kinetic overlap 
Case No. 6 I 8 9 10 
Position of peaks: 40/60 42/58 44/56 46/54 48/52 
Rate constants (X 10m4 s- ‘):30/60 33/5-l 36/54 39/51 42/4g 
Time range: 10 to 1210 s with 60 s intervals 
Noise standard deviation a: 0.030 
Composition of solutions (relative concentration) 
No. Species 1 Species 2 

1 1 1 
2 2 1 
3 3 1 
4 1 2 
5 2 2 
6 3 2 
7 1 3 
8 2 3 
9 3 3 

10 b 1.5 1.3 
11 1 0 
12 2 0 
13 3 0 
14 0 1 
15 0 2 
16 0 3 

a The noise standard deviation is the value given multiplied by the maximum absorbance value in each data matrix. In these experiments the 
noise ranged from 0.5 to 10%. 
b Mixture No. 10 was used as the unknown sample. The errors of the estimated concentrations are given in Table 8. 
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nents to unity. Ten two-component mixtures and three 
solutions of the individual components with different 
concentrations were assumed. The solutions of the 
pure components were used as the calibration sam- 
ples for the GRAM. Both the three pure solutions and 
the first nine mixtures were used as the multiple cali- 
bration samples with TLD. Mixture No. 10 was re- 
garded as the unknown sample, and each component 
was sequentially considered as the analyte. 

The simulated response for another set of 13 
three-component mixtures was obtained by assuming 
that the three components obeyed the first-order law. 

Table 5 
Parameters used in the simulation of the data sets for mixtures of 
three components that follow first-order reactions 

Width of peaks (a 1: 20 arbitrary units 
Wavelength range: 1 to 100 with intervals of 1 

arbitrary unit 
Position of peaks: 35/50/65 for species l/2/3, 

respectively 
Rate constants: 30/60/90 for species l/2/3, 
(x10-4 s-11 respectively 
Time range: 10 to 1210 s with 30 s intervals 
Noise standard 0.030 
deviation a: 
Composition of solutions (relative concentration) 
No. Species 1 Species 2 Species 3 

1 1 1 1 
2 2 1 2 
3 3 1 3 
4 1 2 2 
5 2 2 3 
6 3 2 1 
7 1 3 3 
8 2 3 1 
9 3 3 2 

10 1.5 1.3 1.2 
11 1.5 1.3 1.4 
12 2.5 2.4 1.6 
13 2.5 2.4 1.8 
14 1 0 0 
15 2 0 0 
16 3 0 0 
17 0 1 0 
18 0 2 0 
19 0 3 0 
20 0 0 1 
21 0 0 2 
22 0 0 3 

a The noise standard deviation is the value given multiplied by the 
maximum absorbance value in each data matrix. The errors of the 
estimated concentrations are given in Table 9. 

Table 6 
Parameters used in the simulation of the data set for mixtures of 
two components when one of them undergoes a first-order reac- 
tion and the other one two consecutive first-order reactions 

Width of peaks ((T ): 20 arbitrary units 
Wavelength range: 1 to 100 with intervals of 1 arbitrary unit 
Position of peaks: 40/60 for species l/2, respectively 
Rate constants a: species 1: k, = 4X 10m3 s- ’ 

species 2: k, = 4 x 10 -3 s- 1 and 
k;=1.4x10-3 s-’ 

Time range: 
Noise standard 
deviation b: 

10 to 1210 s with 30 s interval 
0.030 

Composition of solutions (relative concentration) 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Species 1 Species 2 
1 1 
2 1 
3 1 
1 2 
2 2 
3 2 
1 3 
2 3 
3 3 
1.5 1.3 
1.5 1.3 
2.5 2.4 
2.5 2.4 
1 0 
2 0 
3 0 
0 1 
0 2 
0 3 

a For component 2, k, and k; are the first-order rate constants of 

! 
roduct formation and hydrolysis of the product, respectively. 
The noise standard deviation is the value given multiplied by the 

maximum absorbance value in each data matrix. The errors of the 
estimated concentrations are given in Table 10. 

The response was constructed by Eqs. (2) and (5). 
The parameters used in the simulation are shown in 
Table 5. Similarly to the two-component situation of 
above, each pure solution was used as the calibration 
sample for GRAM, and both the three pure solutions 
and the first nine mixtures were used as multiple cal- 
ibration samples for TLD. Once again, each compo- 
nent was taken as the analyte and the other two were 
regarded as unknown interferences. Here, all the 13 
mixtures were used as the unknown samples for 
GRAM and for TLD when the three pure solutions 
were used as the calibration samples, and the four 
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mixtures from No. 10 to No. 13 were considered as 
the unknown samples for TLD while the first nine 
mixtures were used as the calibration samples. 

5.2. Mixture of two components when one of them 
undergoes a first-order reaction and the other fol- 
lows two consecutive first-order reactions 

A mixture of two components in which one com- 
ponent followed the first-order law of Eq. (1) and the 
other followed the reaction process described by Eq. 
(7) was assumed. The response was constructed ac- 

cording to Eqs. (2) and (B), respectively. The param- 
eters used in this simulation are listed in Table 6. 
Similarly, the response of a set of mixtures and sev- 
eral pure solutions of each component were simu- 
lated, and used as the calibration and prediction sam- 
ples for GRAM and TLD. Both components were re- 
garded as the analyte alternatively. 

5.3. Mixtures with both first-order and second-order 
reactions 

The responses for two-component and three-com- 
ponent systems were generated. In each case, one of 

Table 7 
Parameters used in the simulation of the data sets for mixtures of components that undergo first-order reactions in the presence of a second- 
order reaction 

Series I: 
Width of peaks (u ): 
Wavelength range: 
Position of peaks: 
Rate constants: 

Time range: 
Noise standard deviation a: 
Composition of solutions (relative concentration) 
No. Species 1 
lb 1.00 
2 1.25 
3 1.50 
4 1.75 
5 2.00 
6 1.00 

20 arbitrary units 
1 to 100 with intervals of 1 arbitrary unit 
40/60 for species l/2, respectively 
k, =4x 10-3 s-r 
k, = 0.15 s-r mall-’ 
10 to 1210 s with 30 s intervals 
0.030 

Species 2 
1 
1 
1 
1 
1 
0 

Series II: 
Width of peaks: 20 arbitrary units 
Wavelength range: 1 to 100 with intervals of 1 arbitrary unit 
Position of peaks: 40/50/60 for species l/2/3/, respectively 
Rate constants: k,=4x10-3s-’ 

k,=2x10-3s-’ 
k, = 0.15 s-r mall-’ 

Time range: 10 to 1210 s with 30 s interval 
Noise standard deviation a: 0.030 
Composition of solutions (relative concentration) 
No. Species 1 Species 2 Species 3 
lb 1.00 0.5 1 
2 1.25 0.5 1 
3 1.50 0.5 1 
4 1.75 0.5 1 
5 2.00 0.5 1 
6 1.00 0 0 

a The noise standard deviation is the value given multiplied by the maximum absorbance value in each data matrix. 
b Mixture No. 1 is used as the unknown sample. The errors of the estimated concentrations are given in Table 11. 
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the components was supposed to follow a second- 
order kinetic law, and the other (or the other two 
components) was assumed to obey the first-order ki- 
netic law. The responses would be expressed by Eqs. 
(2) and (91, respectively. The parameters used in this 
simulation are shown in Table 7. Only the first-order 
components were considered as the analytes. In order 
to obtain trilinear data arrays, the standard addition 
method was used to construct a series of mixtures 
with increasing analyte concentrations. The solution 
of the isolated analyte, or one of the mixtures after a 
standard addition of the analyte, was used as the cali- 
bration sample for GRAM, and three of the mixtures 
obtained by standard addition were used as the mul- 
tiple calibration samples with TLD. The first mixture 
(the original sample) was regarded as the unknown 
sample. 

6. Results and discussion 

6.1. Simulated data without noise 

For the noise-free data (Table 31, the estimated 
concentrations in all cases coincided with that used in 
the simulation within the round-off error range, and 

the spectra and the kinetic curves were almost ex- 
actly the same as those initially assumed. There was 
no difference between GRAM and TLD. This indi- 
cated that these methods were correctly implemented 
and also hinted that, at least in the absence of noise, 
the accuracy of the estimates of the concentrations 
and physical profiles obtained by GRAM and TLD 
was not affected by the collinearity among spectra 
and kinetic curves of the components. 

6.2. Two-component mixtures that follow indepen- 
dent first-order reactions with noise 

The relative errors of the estimated concentrations 
at the different noise levels and various degrees of 
spectral and kinetic overlap assumed in Table 4, are 
shown in Table 8. The upper part of Table 8 (corre- 
sponding to cases 1 to 5 in Table 4) lists the results 
of a two-component mixture (No. 10 in Table 4) at 
different noise levels. The first six columns are the 
results obtained with GRAM, where a single compo- 
nent solution was used for calibration. Columns seven 
and eight are the results given by TLD, where all the 
three single component solutions were used as cali- 
bration samples, and the last two columns list the re- 
sults obtained with TLD by using nine mixtures as 

Table 8 
Simulated mixtures of two components that follow first-order kinetics: relative error of the estimated concentrations (in percentage) at differ- 
ent noise levels and various degrees of spectral and kinetic collinearities 

Case GRAM TLD 
No. Calibration sample No. a Calibration sample Nos. a 

tft-om 11 to 13,‘Zomponent ll,” 
14 15 16 11-13 14-16 l-9 l-9 
(from 14 to 16, component 2) (camp. 1) (camp. 2) (camp. 1) (camp. 2) 

Series I (different noise level) 
1 - 0.45 (I) b - 0.11 (I) 0.38 (I) 
2 - 0.66 (I) - 0.63 (I) - 0.44 (I) 
3 0.41 (I) - 0.44 (I) - 0.66 (I) 
4 - 3.4 (II) - 3.3 (II) - 2.2 (I) 
5 - 7.6 (II) - 7.4 (II) - 4.9 (II) 

Series II (different spectral and kinetic overlap) 
6 0.41 (I) - 0.44 (I) - 0.66 (I) 
7 - 2.9 (I) - 2.8 (I) - 1.8 (I) 
8 - 4.9 (II) - 4.5 (I) - 2.4 (I) 
9 - 3.4 (I) - 3.3 (I) - 2.2 (I) 

10 - 1.4 (II) - 16 (II) 5.8 (I) 

0.18 (I) 
1.1(I) 
3.0 (1) 
5.6 (I) 
12 (I) 

3.0 (I) 
4.3 (I) 
6.0 (I) 
5.6 (I) 
6.1 (I) 

0.015 (I) 
1.0 (I) 
2.7 (I) 
5.2 (I) 
11 (II) 

2.7 (I) 
4.8 (I) 
5.9 (I) 
5.2 (I) 
6.5 (I) 

0.039 (I) 
1.1 (I) 
3.3 (I) 
5.6 (I) 
12 (II) 

3.3 (I) 
4.4 (I) 
6.3 (I) 
5.6 (I) 
14 (I) 

- 0.087 (I) 
- 0.53 (I) 
- 1.0 (I) 
-4.1 (II) 
- 9.5 (II) 

- 1.0 (I) 
- 3.3 (II) 
- 5.4 (II) 
- 0.12 (II) 
- 4.5 (II) 

- 0.67 (II) 
- 0.34 (III) 
2.6 (I) 
5.0 (II) 
12 (II) 

2.6 (I) 
3.7 (I) 
5.9 (I) 
5.8 (I) 
9.8 (II) 

- 0.30 (II) 
-O.ll(II) 
- 0.50 (II) 
3.5 (111 
- 6.1 (III) 

- 0.50 (II) 
2.3 (II) 
- 2.9 (II) 
7.3 (II) 
3.4 (II) 

0.13 (II) 
- 0.02201) 
- 0.67 (II) 
- 2.2 (II) 
21 (1111 

- 0.67 (II) 
- 1.5 (II) 
7.8 (II) 
- 4.9 (II) 
2.7 (II) 

a The composition of the mixtures was given in Table 4. 
b The values of the linear correlation coefficients between the calculated and the assumed spectra and kinetic curves are indicated between 
parentheses: I, both of them were r > 0.999; II, the smaller one was 0.99 < r < 0.999; III, at least one was r < 0.99. 
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calibration samples. From the upper part of the table, 
the accuracy of the estimated concentrations and 
physical profiles in both orders of the instrument de- 
graded slightly as the noise level increased, however 
satisfactory qualitative and quantitative results were 
obtained for the binary mixtures at all the noise lev- 
els tried with both GRAM and TLD. There was no 
significant difference when the single component so- 
lution with various concentrations was used as the 
calibration sample for GRAM. Also, the perfor- 
mance of GRAM and TLD was almost the same. 

The results for the same two-component mixtures 
with increasing spectral and kinetic overlap are given 
in the lower part of Table 8. With the moderate noise 
level adopted, both GRAM and TLD accurately re- 
solved the mixtures with quite large overlap in both 
orders of the instrument. Similarly to cases 1 to 5, no 
significant improvement of TLD over GRAM was 
observed in spite of the larger number of standards 
used in the former. Therefore, under the condition of 
ideal bilinear data structure with random noise used 
in the simulation, a single standard sample is enough 
in GRAM calibration, and it may be more difficult to 
retain the trilinearity when multiple samples are used 
as both the collinearity between physical profiles and 
the noise level increased. 

component mixtures generated according to the con- 
ditions of Table 5. The results obtained with GRAM 
when one of the single component solutions was used 
for calibration are listed in the first three columns of 
Table 9. Calibration with the other single component 
solutions gave rise to very similar results. The results 
obtained with TLD calibrated with three single com- 
ponent solutions, and with the nine mixtures, are 
shown in the successive columns of Table 9. For the 
three components, the physical profiles were esti- 
mated with almost the same accuracy, but the error 
of the estimated concentration of the second compo- 
nent was higher than that of the other two. Probably, 
the second component underwent the largest 
collinearity. 

Table 9 shows the results obtained for the three- 

Thus, GRAM and TLD provided acceptable re- 
sults for the three-component mixtures tried. How- 
ever, the use of GRAM and TLD on kinetic systems 
with more components may yield very bad results. 
Unlike the spectra, kinetic curves exhibit a relatively 
monotonous shape and do not show much variation 
for components with quite different rate constants, 
thus the collinearity in the kinetic aspect would in- 
crease rapidly with the number of components. For 
this three-component system, the ratios of rate con- 
stants were 2 and 1.5 for the l/2 and 2/3 compo- 
nent pairs, respectively. However, the condition 

Table 9 
Simulated mixtures of three components that follow first order reactions: relative error of the estimated concentrations (in percentages) 

Case GRAM TLD 
No. Calibration sample No. ’ Calibration sample Nos. ’ 

14 
(camp. 1) Lmp. 2) CLmp. 3) 

14-16 17-19 20-22 l-9 l-9 l-9 
(camp. 1) (camp. 2) (camp. 3) (camp. 1) (camp. 2) bmp. 3) 

1 2.1 (I) b 8.8 (I) 6.7 (I) - 2.6 (I) 11 (I) 1.3 (III) 
2 1.2 (I) 21 (II 5.9 (I) 2.3 (I) 23 (1) 1.9 (III) 
3 2.2 (I) 21 (I) 5.1 (I) 7.0 (II) 23 (I) 2.3 (III) 
4 6.5 (II 9.9 (I) 8.2 (I) 7.4 (I) 10 (I) 6.2 (III) 
5 2.7 (1) 11 (I) 4.9 (I) 9.9 (I) 13 (I) 1.1 (III) 
6 2.1 (I) 12 (I) 8.0 (I) 8.5 (I) ’ 11 (III) 
7 6.1 (I) 4.9 (I) 5.9 (I) 6.0 (1) 

:l,‘i:, 
1.1 (III) 

8 1.5 (I) 0.1 (I) 9.9 (I) 8.8 (I) 7:1 (I) 6.3 (III) 
9 2.2 (I) 10 (III) 28 (I) 2.6 (I) 60 (III) 16 (III) 

10 1.3 (I) - 2.7 (I) 8.5 (I) 5.5 (I) - 1.7 (I) - 1.5 (III) 
11 3.2 (I) 3.5 (II 7.5 (I) 10 (I) 4.8 (I) 5.8 (III) 
12 1.5 (I) 4.5 (I) 11 (I) 2.1 (II) 5.1 (I) 0.68 (III) 
13 2.2 (I) 7.9 (I) 11 (I) 4.6 (II) 7.8 (I) 2.5 (III) 

a The composition of the mixtures is given in Table 5. 
b The reman figures between parentheses have the same meaning as in Table 8. 

- 2.0 (III 3.5 (III) - 2.6 (III) 
- 2.1 (II) 4.6 (III) - 1.7 011) 
- 2.3 (III 2.6 (III) 5.7 (III) 
1.5 (III - 0.47 (III) 2.3 (III) 
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number of the kinetic curves of these components was 
138, which indicated a very strong collinearity among 
the components. Furthermore, the second component 
exhibited the strongest collinearity, which agreed 
with the higher error found. A further increase of the 
number of components would largely increase the 
collinearity and the error. 

The number of principal components (PCs) used in 
GRAM and TLD is an important factor. According to 
Sanchez and Kowalski [13], to overdetermine the 
number of PCs is better than to underdetermine it. 
However, in order to avoid a complex solution, the 
use of a smaller number of PCs than the optimal 
number is sometimes preferred [5]. With the simu- 
lated data sets of above, we have also investigated the 
influence of the number of PCs. For the two- and 
three-component mixtures, from a number of PCs 
equal to the number of intrinsic components (2 or 3) 
up to 7 PCs have been used to construct the GRAM 
and TLD models. No obvious influence of the num- 
ber of PCs on the estimated concentration and physi- 
cal profiles was found. To increase the number of PCs 
increased the possibility of occurrence of complex 
eigen solutions, but most of them had no significant 
influence on the final results, because the imaginary 
part could be almost ignored. Furthermore, some- 

times it was found that to further increase the num- 
ber of PCs resulted in the elimination of the complex 
solutions which appeared with the use of a fewer 
number of PCs. This hinted that the collinearity may 
not be the only cause for the outcrop of complex so- 
lutions. The determination of the number of PCs will 
not be a serious problem in the use of GRAM and 
TLD for kinetic data treatment, since usually a lim- 
ited number of components is to be found. The num- 
ber of PCs is established on the basis of the relative 
magnitude of the eigenvalues. This will yield a num- 
ber of PCs not far from the true number of intrinsic 
components. Then the correlation coefficients be- 
tween the estimated physical profiles and the ‘true’ 
ones will be calculated for several values of the 
number of PCs, and the one providing the largest 
correlation will be selected. 

There is an important difference between GRAM 
and TLD. The use of GRAM for qualitative purposes 
requires the physical profiles of the components to be 
known, which is not necessary in TLD. When sev- 
eral standards are used for calibration in TLD, the 
identification of the component can be carried out by 
calculating the correlation coefficients between the 
estimated concentration profile and the real pattern of 
the component in the standards. Then, the compo- 

Table 10 
Simulated mixtures of two components when one of them undergoes a first-order reaction and the other one two consecutive first-order 
reactions: relative error of the estimated concentration (in uercentages) 

Case 
No. 

GRAM 

Calibration sample No. a 

Emp. 1) t:rnp. 2) 

TLD 

Calibration sample Nos. a 

14-16 17-19 
(camp. 1) (camp. 2) 

l-9 
(camp. 1) 

l-9 
(camp. 2) 

1 1.7 (I) b 
2 1.2 (I) 
3 0.20 (I) 
4 2.7 (I) 
5 0.68 (I) 
6 1.9 (I) 
7 4.2 (I) 
8 1.3 (I) 
9 0.44 (I) 

10 0.52 (I) 
11 0.54 (I) 
12 2.0 (I) 
13 1.1 (I) 

0.24 (I) 
0.15 (I) 
- 1.3 (I) 
- 0.46 (I) 
- 0.37 (I) 
1.2 (I) 
- 0.65 (I) 
- 0.25 (I) 
- 1.4 (III) 
- 1.2 (I) 
0.046 (I) 
- 0.40 (I) 
- 0.46 (I) 

2.8 (II) 
2.0 (II) 
0.51 (II) 
6.0 (III) 
2.7 (III) 
3.1 (III) 
9.8 (III) 
5.1 (III) 
2.5 (III) 
1.9 (III) 
1.1 (II) 
5.2 (III) 
2.9 (III) 

- 2.4 (III) 
0.20 (111) 
7.7 (III) 
- 1.5 (111) 
- 2.7 (III) 
- 2.4 (III) 
- 0.98 (II) 
- 1.5 (111) 
- 3.2 (III) 
- 3.5 (III) - 2.1 (III) 0.92 (III) 
- 4.2 (III) - 1.5 (111) - 0.86 (III) 
- 1.7 (III) 0.89 (III) 0.25 (III) 
- 2.5 (III) - 0.56 (III) - 0.33 (III) 

a The composition of the mixtures is given in Table 6. 
b The roman figures between parentheses have the same meaning as in Table 8. 
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Table 11 
Mixtures of components that undergo first-order reactions in the 
presence of a second-order reaction: relative error of the estimated 
concentration (in percentages) 

Number of GRAM TLD 
components Calibration Calibration 

sample No. a sample Nos. a 

6 5 2-5 
(camp. 1) (camp. 1) (camp. 1) 

2 0.12 (1) b - 0.56 (I) - 0.71 (II) 
3 14 (I) - 11 (I) - 6.0 (I) 

a The composition of the mixtures is given in Table 7. 
b The reman figures between parentheses have the same meaning 
as in Table 8. 

nent can be determined by the interpolation on the 
linear calibration function constructed with the con- 
centrations of the standards. 

6.3. Simulated mixtures when one of the components 
undergoes two consecutive first-order reactions 

The results given in Table 10 are similar to those 
shown in Table 9, indicating that the actual reaction 
mechanism is not important, as long as the data fol- 
low bilinear or trilinear relationships with respect to 

the evaluated parameters. For GRAM, only the re- 
sults obtained by calibration with one of the single 
component solutions were listed, since calibration 
with other single component solutions gave rise to 
very similar results. 

6.4. Simulated mixtures in the presence of a second- 
order kinetic reaction 

Table 11 shows the results obtained with mixtures 
of two and three components that follow first-order 
reactions in the presence of a second-order reaction. 
Since the response of the component that undergoes 
the second-order reaction cannot be modelled by the 
trilinear model, the determination of the other com- 
ponents following first-order reactions should be per- 
formed by the standard addition method with a fixed 
background that includes the second-order reacting 
component. This would preserve the trilinearity in the 
resultant third-order tensor. In both series of mix- 
tures listed in Table 7, mixture No. 1 was assumed to 
be the unknown original sample, and the other mix- 
tures obtained after standard addition were used as the 
calibration samples with TLD. The calibration sam- 
ple for GRAM was either a single component solu- 
tion or a mixture after standard addition. The results 

Table 12 
Relative errors of the estimated concentrations (in percentages) for the o-AEIA/ORC mixtures 

Exp. GRAM TLD 
No. Calibration sample No. a Calibration sample Nos. ’ 

14 15 16 
thorn 17 to 19,1iRC) 

19 14-16 17-19 l-9 l-9 
(from 14 to 16, o-ADA) (o-ABA) (ORC) (o-ADA) (ORC) 

1 1.7 (I) b - 1.2 (I) - 4.3 (I) - 1.3 (III) 0.50 (III) - 7.4 (III) - 0.20 (I) - 8.5 (III) 
2 - 1.9 (I) - 2.5 (I) - 4.9 (I) - 7.8 (III) - 7.5 (III) - 3.3 (III) - 2.5 (I) 
3 - 0.64 (I) 0.73 (I) - 1.1 (I) - 5.1 (III) - 5.6 (III) 1.3 (III) 0.33 (1) 
4 6.5 (II) 1.1 (I) - 3.8 (I) - 0.48 (III) - 5.0 (III) 0.44 (III) 3.9 0) 
5 5.6 (II) 2.6 (I) - 6.4 (I) - 6.3 (III) - 4.4 (III) - 1.8 (III) 3.1 (I) 
6 3.6 (I) 4.1 (I) 1.6 (I) - 3.6 (III) - 4.2 (III) 2.6 (III) 5.0 0) 
7 14 (I) - 4.2 (I) - 0.70 (1) - 4.3 011) - 2.5 (III) 3.0 (III) 6.3 (I) 
8 6.1 (II) 7.9 (I) 3.9 (I) 2.0 (III) 1.4 (III) 8.7 (III) 5.8 (I) 
9 4.2 (I) 5.4 (I) 2.2 (I) 1.0 (III) 0.42 (III) 7.8 (III) 2.6 (I) 

10 6.5 (II) 3.5 (I) - 0.34 (I) 0.18 (I) 3.6 (III) 2.3 (III) 2.3 (I) 
11 8.0 (II) 14 (1) 6.2 (I) - 2.3 (I) - 2.9 (III) 4.9 (III) 9.8 (1) 

12 
13 

12 (II) 
13 (II) 

12 (I) 
9.5 (I) 

110) 
7.4 (I) 

6.5 (I) 5.4 (III) 23 (III) 12 (I) 
- 2.9 (I) - 2.7 (III) 5.1 (III) 5.8 (I) 

- 1.1 (III) 
- 8.7 (III) 
- 2.1 (III) 
- 4.7 (III) 
- 1.3 (III) 
- 2.8 (III) 
7.3 (II) 
6.1 (III) 
- 0.80 (III) - 3.9 (II) 2.9 (III) 
1.5 (III) 3.1 (II) -0.30 

(III) 
8.1 (III) 2.5 (III) 11 (III) 
- 0.15 (III) - 0.96 (III) - 4.2 (III) 

a The composition of the mixtures is given in Table 2. 
b The roman figures between parentheses have the same meaning as in Table 8. 
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Table 13 
Relative errors of the estimated concentrations (in percentages) for the m-ABA/p-ABA mixtures 

Exp. GRAM TLD 
No. Calibration sample No. a Calibration sample Nos. a 

14 15 16 17 18 19 14-16 17-19 1-9 
(from 14 to 16, m-ABA) (from 17 to 19, p-ABA) (m-ABA) (p-ABA) (m-ABA) 

l-9 
(p-ABA) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

- 2.0 (I) b 2.1 (I) 
- 4.4 (I) - 0.22 (I) 
- 5.7 (I) - 1.1 (I) 
1.2 (I) 5.3 (I) 
0.26 (I) 2.3 (I) 
- 0.98 (I) 0.038 (I) 
- 0.070 (I) 5.4 (I) 
- 2.0 (I) 2.8 (I) 
- 0.74 (I) 4.3 (I) 
- 1.2 (I) 5.4 (I) 
- 0.33 (1) 2.2 (I) 
11 (I) 8.7 (I) 
1.8 (I) 2.3 (I) 

1.5 (I) 4.5 (I) 6.4 (I) 7.4 (I) 8.7 (I) 6.0 (I) 
- 1.4 (1) 4.0 (I) 5.8 (I) 7.0 (I) 7.5 (I) 6.5 (I) 
- 2.5 (I) 4.4 (I) 6.5 (II 7.5 (I) 4.4 (I) 6.4 (I) 
4.3 (I) 2.0 (I) 5.3 (I) 5.5 (I) 0.90 (I) 5.4 (I) 
2.5 (I) 1.6 (I) 3.5 (I) 4.1 (I) 5.3 (I) 4.1 (1) 
1.1 (I) 1.5 (I) 3.1 (I) 3.9 (II 2.7 (II 4.0 (I) 
-0.13 (I) - 2.7 (I) - 0.98 (I) -0.46 (I) 1.1 (I) 0.24 (I) 
- 1.9 (I) - 2.8 (I) - 1.3 (I) - 0.52 (I) 1.8 (I) -0.13 (I) 
- 4.3 (I) - 0.28 (II - 0.280) 7.9 (I) 5.8 (I) 5.3 (I) 
0.75 (1) - 1.3 (I) - 0.022 (1) 1.9 (I) 1.2 (I) 4.4 (I) - 0.083 (I) -0.58 (I) 
0.45 (I) - 0.63 (I) 1.6 (I) - 0.050 (I) 0.48 (I) 2.0 (I) 0.97 (I) - 4.60 (I) 
11 (I) 5.1 (I) 7.4 (I) 7.7 (I) 0.92 (I) 8.6 (I) 12 (I) 3.7 (I) 
3.7 (I) 0.17 (I) 2.8 (I) 2.9 (I) - 0.42 (I) 2.6 (1) 1.8 (I) - 8.3 (I) 

a The composition of the mixtures is given in Table 2. 
b The roman figures between parentheses have the same meaning as in Table 8. 

are listed in Table 11. The estimated physical pro- 
files for the two- and three-component mixtures were 
accurate, but the error in the estimated concentra- 
tions was somewhat higher for the latter owing to the 
stronger collinearity. 

6.5. Resolution of binary mixtures 

The results obtained with GRAM and TLD for the 
series of binary mixtures are listed in Tables 12-14. 
Both the physical profiles and the concentrations were 

Table 14 
Relative errors of the estimated concentrations (in percentages) for the o-ABA/m-ABA mixtures 

Exp. GRAh4 TLD 
No. Calibration sample No. a Calibration sample Nos. a 

14 15 16 
(from 14 to 16, o-ABA) 

thorn tollg9, m-ADA; 14-16 17-19 l-9 l-9 
17 (O-ADA) (m-ABA) (O-ABA) (m-ABA) 

1 1.5 (I) b - 0.16 (I) 4.9 (I) 27 (II) 27 (III 22 (III) 5.8 (I) 21 (III) 
2 -5.8 (I) - 7.0 (I) - 6.5 (I) 34 (II) 34 (11) 18 (III) - 5.4 (1) 16 (III) 
3 -5.0 (I) - 6.5 (I) - 6.5 (I) 45 (II) 46 (II) 22 (III) - 5.5 (I) 20 (III) 
4 6.8 (I) 5.2 (I) 4.2 (I) 22 (II) 22 (II 18 (III) 6.7 (II) 19 (111) 
5 5.3 (I) 3.6 (I) 2.5 (I) 25 (I) 26 (II) 18 (III) 9.3 (I) 16 (III) 
6 5.5 (I) 3.5 (I) 2.2 (II 22 (II) 24 (III) 15 (II) 6.6 (I) 11 (III) 
7 26 (I) 39 (I) 23 (I) 10 (I) 4.9 (111) 5.0 011) 38 (II 4.7 (III) 
8 21 (I) 26 (I) 17 (I) 15 (II) 7.6 (III) 7.3 (II) 25 (I) 7.1 (III) 
9 19 (I) 20 (I) 15 (I) 26 (III) 17 (III) 15 (II) 20 (I) 15 (III) 

10 13 (I) 11 (I) 9.8 (I) 13 (I) 14 (1) 12 (III) 7.2 (II) 12 (III) - 0.30 (I) - 3.7 (III) 
11 22 (I) 20 (I) 14 (I) 9.6 (III) 9.0 (III) 12 (II) 19 (I) 7.8 (III) 3.0 (I) - 0.79 (III) 
12 28 0) 26 (I) 25 (I) 20 (II) 21 (11) 14 (II) 28 (II) 15 (II) 13 (I) 2.5 (III) 
13 17 (I) 16 (II 8.9 (I) 8.0 (III) 7.4 (III) 8.7 (II) 15 (I) 6.0 (III) - 1.4 (I) - 5.0 (III) 

a The composition of the mixtures is given in Table 2. 
b The roman figures between parentheses have the same meaning as in Table 8 
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estimated with quite small errors for the o- 
ABA/ORC and m-ABA/p-ABA mixtures, thus 
showing that the ‘second-order advantage’ can also 
be exploited using kinetic-spectral data. However, for 
the o-ABA/m-ABA mixtures, the error of the esti- 
mates of the concentrations was much higher than for 
the other binary combinations, although the estimates 
of the physical profiles were still quite satisfactory. 
This should be attributed to the very large spectral 
and kinetic overlap of this substrate combination. The 
number of PCs used in the calculation was 2 or 3, 
depending on the correlation between the calculated 
physical profiles and the measured ones. 
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