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SUMMARY

Positive matrix factorization (PMF) is a least squares approach to factor analysis which was originally developed
for environmental data analysis and has been applied to several problems in resolving sources of environmental
pollutants. PMF has been used as both a two-way and three-way data analysis tool. In this investigation, three-
way data arrays were used to explore the ability of PMF in curve resolution. Pulsed gradient spin echo (PGSE)
nuclear magnetic resonance (NMR) data were measured for spectral mixtures where the concentrations of the
compounds decay exponentially. Three-way data arrays were constructed by packing different parts of the data
from single experiments and were analyzed with three-way PMF to obtain the NMR spectra, decay profiles and
the self-diffusion coefficients of constituents.1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Instruments that generate two-way data arrays are now common in the analytical laboratory.
Depending on whether the measurements are made on single or multiple samples, two- or three-way
data can be subsequently formed. Calibration and spectral resolution are major foci of data analysis
methods in analytical chemistry.

In two-way cases, research has focused on the resolution of complex mixtures and the assessment
of peak purity based on the interpretation of hyphenated chromatographi¢ datariety of
algorithms, mostly based on principal component analysis (PCA), have been proposed and the
evolutionary character of hyphenated chromatographic data has been utilized to alleviate or eliminate
ambiguity.

For three-way data, parallel factor analysis (PARAFAC) is the most commonly used nféthed.
trilinear structure of a data array can provide an identifiable solution that does not contain the
rotational freedom that exists in all two-way analy3&®r a particular case where there are only two
‘slices’ in one of the orders of the three-way data array, the factorization can be done by solving a
rectangular generalized eigenvalue—eigenvector problem using the generalized rank annihilation
method (GRAM)?

Similar mathematical treatments with different physical models appear in data analysis used in
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otherscientificfields.Forexampk, PCA,PARAFAC andothe factorizaion techniqiesarealsoused
for receptor modding of environrentaldatain orderto idertify andappotion pollutantsinto various
sources,

Recently a new mathenatical technique called postive matrix factoiization (PMF) was
developed This techniquediffers from PCA in that individual error estimaes of eachdatapoint
are utilized andnon-negativty and other constrants on the factors are integratedinto the analysis.
PMF canbeappledto bothtwo-way andthree-wa dataarrays PMFhasbeenusedin theanalyss of
environnental data, and specfically for recgtor modding of pollutants, and there have beena
numberof succesful appications’~*°

As a generaimathenaticaltool, PMF shoul alsobe usetil for mixture resdution problens asare
other chemonetrics techniques. A simulated spectrscopic-like exampe' and a data set of
fluorexcencespectrgraplic meauremats-> havebeenpreviousdy usedto demonstatethe potential
of PMFfor curveresolution. It is theaim of this study to examinethe useof threeway PMFfor curve
resolutian of expeimentaldata.Thethree-waydatapreviouslyanalyzedby Windig andAntalekwith
GRAM?*2 havebeenemployel to testPMF.

POSITIVE MATRIX FACTORIZATION

The PMF algarithm is descibed in detail elsewtere® so only a brief outline will be given here.
Supposig X is anm x n x g three-waydataarray which resuts from the linear combination of p
intrinsic factors in the measuementsystem the trilinear decompogion of X canbe modded as

X=A®B®C+E 1)
or

p
Xik =Y AnBnCin+Ej (i=1...mj=1...mk=1...,g h=1...,p) (2
h=1
whereA, B and C are the resolval two-way confarming factors for eachof the three modes,the
symbol ® representghe tensorprodud andE contairs the residuds.

PMF solves an optimal weightedleastsquaestask by assigningmore realistic weights for each
data point X, Wik = 1/ai,2k where the values of oy are the uncertanties associgéed with the
measuements Typically, o is the uncertanty in the measued value Xij.

The trilinear modelcanbe solved by minimizing the objective function

m n ¢ ) m n ¢ Eix 2
i=1 j=1 k=1 i=1 j=1 k=1 \ik

As a default option, PMF usesa penaty functionto constain the factors to be non-neyative, as
mostphysical confarming factors are nevernegaive. It alsoincludesregulariztion of the factors®
The factors are solved by an iterative optimization of both factors in eachstep® which makesthe
algorithm efficient. A comparisonof PMF? has beenmadewith direct trilinear deconposition
(DTD)** andseveal othertrilinearmodd prograns thatarebasecbn altematingleastsquaes(ALS)
methodsPMFwasfoundto bemudh fasterthantheothe ALS methodgested Althoughit wasnotas
fastasDTD, DTD produed poor resultsfor someill-conditioned problems.

PGSENMR DATA

The PGSENMR dataweredescribedby Windig andAntalek** PGSENMR usesa pulsedmagnetic
field gradientwhich influenceghe sigral intensity of theresmancefrom the componentsn solution.

01998JohnWiley & Sons,Ltd. J. Chanometrcs 12, 357-364(1998)



POSITIVEMATRIX FACTORIZATION 359

0.012 . , , '
0.010 | TX-100 A =0.930
2
‘% 0.008 | |
3 tved ’ \
Resolve
£ 0.006 |
E —— - Reference
L
2 0004} |
=
= g.002 |
&
0.000 | I\
-0.002 L ‘
3 6 4 2 0
ppm
0.0025 ,
Gelatin =0.
0.0020 | r=0.995
2z
Z o.0015 L
Q
]
=
= 0.0010 |
(]
2
00005 -
(D)
A& 0.0000 |
-0.0005 L - , , ‘
8 6 4 2 0
ppm

Figurel. Two-factorPMF resultsfor mixture 1: top, resolvedandreferencespectraof TX-100; bottom,resolved
andreferencespectraof gelatin.

The contributionof eachof the conponentsto the sigral canbe descriked by

A _ D) (gs2(a-5/3)
Aoli) — © @

whereA(i) is theamgitude of compamenti, D(i) is the self-dffusion coefficientof component (m?

s 1), Aq(i) is theampitude with no magnetiogradientsy is the gyromagneticratio of the *H nucleus

(radS™* T7%), g is themagneic gradientstrength(T), which is variedduring the experimentso that

theincrementsfor subsguentg? valuesarethe same A is thediffusion time (s) ands is the gradient

width (s). The value of the tem 62 (A — 6/3) is givenfor a certainexperiment

The naturallogarithm of the valuesof A(i) is a linear function of g° wherethe slope is

s= —D(i)y%6*(A — §/3) (5)

The slope can be calculaed by simple regression. Since the experinental sigral decays
exponatially for everycomponentaindthedecayis afunctionof the self-diffusioncoefiicient, PGSE
NMR is usedto deternine thesecoefficients. The diffusion coefficient canthenbe calculatedas

s
— 6
7-157x 106 x ¢ (6)

In this equaton thevalueof 71157 x 10'® wassubstititedfor y?, andc is thevalue of 62 (A — 6/3),

D(i) =
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Figure 2. Two-factor PMF resultsfor mixture 2: top, resolvedand referencespectraof di-(C6-Glu); bottom,
resolvedandreferencespectraof gelatin.

which is differentfor eachexperiment

Threesanpleswereanalyzedin the PSGEexpeiments.Thefirst sampleis a mixture of 0[1% w/w
TX-100, a non-ionic surfactant and 5% w/w gelatin (mixture 1). The experimentresultedin 20
spectrawith 4095datapointseach(—0B8to 81 ppm). Thesecom sampe is amixture of O15%w/w
di-(C6-Glu), a non-ionic surfacant,and 5% w/w gelatin (mixture 2). The experimentresultedin 20
spectrawith 4095 data points each (—0[B8 to 81 ppm). The third sampleis a mixture of two
componerd, 2-chlomopropionic acid and 2-aminobenathiozok, 094% w/w and 12% w/w
respedwely, in dimetyl sulfoxideds (DMSO) (mixture 3). Fifteen spectrawere acquied with
6218pointseach.

DATA ANALYSIS

Accordingto Windig andAntalek;*® the spectraat the beginning or/andthe endof eachdatasetare
excludedin the dataanalyss becausehey are either causedby the sef-diffusion of wateror they
deviatesubstaritlly from the othe spectraThusonly spectra2—13,spectra2—11andspectra2—15
wereusedfor mixturesl—-3respectivey. Sincethe signaldecay exponatially, two differentpartsof
the datasetcanbe usedto creae two datamatrices, where the correspading columnsof thes two
matrices differ by only a scalng factorandthe purespectraandconcentrationprofileswill haveunit
correltion coefficients. A three-way data array constru¢ed by packing such two-way matrices
togethe will therefordit atrilinear model.Analogous to Windig andAntalek,'® two datamatricesfor
eachdatasetweregenentedby takingthefirstto the (n—1)th andthesecondo thenth spectraof each
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Figure 3. Three-factorPMF resultsfor mixture 3: top, resolvedspectrumof DMSO/water;middle, resolved
spectrumof 2-aminobenzothiozoléyottom, resolvedspectrumof 2-chloropropionicacid.

experimenal datasetrespedwely, andthusthe threeway dataarraysof thesethreemixtureshave

dimengons 4095x 11 x 2,4095x 9 x 2 and6218x 13 x 2 respectively, and PMF analseswere
made.

RESULTS AND DISCUSSION

Error estimatedor thesemeasurerantswerenot availablewith the data.To makefull useof PMF,
error estimatesare neededfor eachdatapoint, and thusthey had to be estimaed. PMF provides
variousmodads for errorestmation. An absolte errorplusarelative error proportion to the signal
amplituce wasassunedandthe constans were chose by trial anderror. Examindion of equatian (3)
suggestshatthetheoreticalQ valueshout apprachthe numberof datapointsin thedataarrayif the
error estimaesare goodapproximaitonsto the actualerrors.Therdore PMF wasrun with different
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Figure4. Extrafactorwhenonefactormorewasusedfor mixtures:top, noisefactorwhenthreefactorswereused
for mixture 1; middle, noisefactor whenthreefactorswereusedfor mixture 2; bottom, noisefactor whenfour
factorswereusedfor mixture 3.

constans representingabsoluteandrelative errorsandthe PMF resultwith a Q valueclosestto the
theoreti@al onewasretained.

Theoriginal experimendl datacontainnegatie valuesthatmaybetheresultof instrumentalnoise.
Thedefaultnon-negavity optionwasdeactivaédin ordernotto introduce bias. The correctnumber
of componert of thedatasetwasdetermiredby obsewationof theresolvedfactors.Ilt wasfoundthat
whenonefactor morethannecessarwasextractedtheresultingspectum clearly showsonly noise.

It wasfoundthattwo-factormodds fit mixtures1 and2, but a three-fator modelwasneededor
mixture 3. The resdved specta of the conmponentsin the mixtures are shown in Figures1-3 for
mixtures1-3respedwely. Modelswith oneaddtional factorwerecalculaedfor eachmixture. These
extrafactors areshown in Figure4 andappeato consistonly of noise,indicating thatthe choicesfor
numberof factors were correct

Figure 1 showsthe excellent agreenent betwea the resolval andreferencespectrum of gelatin.
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Table 1. Self-diffusion coefficientsandlinearity of gelatin/TX-100mixture

Self-diffusion coefficient(m? s~%)

Slopé Eigenvalué Direcf PMP rc
Gelatin 1B2x 1071 1@2x 101 1B2x 10 1B1x 10'Y1@2x 10711 10000
TX-100 900x 10 8@6x 101 908x 101! 8F7x 10 1Y8B5x 1071t 00998

@ Wwindig and Antalek result!®
b Lowerfupperlimits of 99% confidence.
¢ Correlationcoefficient.

Table 2. Self-diffusion coefficientsandlinearity of gelatin/di-(C6-Glu)mixture

Self-diffusioncoefficient(m? s™%)

Slope Eigenvalue Direct PMF r
Gelatin 123x 1071 13x 107 1@7x 107 1m0x 10°1m4a x 107 00999
Di-(C6-Glu) 2@2x 10 ° 2@35x 10°1° NA 23 x 10 %2@4 x 10°1° 00998

Seefootnotesto Tablel.

Table3. Self-diffusioncoefficientsandlinearity of 2-aminobenzothiozole/2-chloropropioracid/DMSO/water
mixture

Self-diffusion coefficient(m? s %)

Slope Eigenvalue Direct PMF r

DMSO/water 727 x 10710 7@2x 1071° 4@2x 1071° 7078x 10719726 x 1071° 0©@999
2-Aminobenzothiozole 300x 10°1° 3@0x 10°1° 3M0x 10°1° 2B1x 1019283 x 1071° 10000
2-Chloropropionicacid 301 x 10%° 301x 107° 3B4x 10°!° 3B89x 10 '%300x 10°'° 10000

Seefootnotesto Table 1.

Thecorrelationcoefficient is 0995. The agreenentbetwee the extraced andreferencespectrumof
TX-100is alsogoad, with a correlationcoefficient of 0[930. Thesevaluesareessatially idertical to
thoseof Windig and Antalek.

The extractedspectraof gelatn and di-(C6-Glu) are plotted in Figure 2 togetherwith their
referencespectraGoodagreementwasobtainal betwee the calculaed andreferencespectum of
gelatin, with a correlation coefficiert of 0@93. It is clear from the figure that the main spectra
featuresof di-(C6-Glu) were alsoextraced. Howeve, a lower correlationcoefficient of 0[794 was
obtainal. Thereis a seriousspectraoverlapbetwee the spectreof gelatinanddi-(C6-Glu), restiting
in someresidué rotationd freedom.Theresultspresentedherearethe directoutpu of thealgarithm
without further adjustmeh The correlationcoefficientsfor thesetwo componentswvhenderivedby
GRAM are 0993 and 01800, resgectively*® showing a similar problem with fully resolvingthe di-
(C6-Glu) spectrum.

Including waterandthe solvent DMSO, mixture 3 actually contairs four componerg. However,
similarto the GRAM resuts, only threesignificant componentould beobtained. Theextrafactorin
afour-factor modd canbe characerizedasnoise (seeFigure4). Shownin Figure3 it appeasthata
combina compmpnentof DMSO and water was derived. The two resdved componentsepresat
2-aminobenathiozok and 2-chloroprojonic acid respectively. Since referencespectrawere not
provided for thesecomponents,no correlation coefiicients betwee the calculated and reference
spectrawere computel.
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By regressingthe naturallogarithm of thefactor scoresepresentinghe compouml concentations
in eachmixtureagansttime, excelentlinearrelatonshipswereobtaned. Thecorrelationcoefficients
of linearregressionsarelistedin Tables1-3.The 99% confiderce intervalsfor the slopeswere also
calculated and then the correspading confiderte ranges of the self-diffusion coeficients of the
componeng werecalculaedusing equatio (6). The valuesarelistedin Tables1-3alongwith those
of Windig and Antalek® Thereareno significant differencesbetwea the two ses of results.

CONCLUSIONS

Theresultsshowthat PMF canperform curveresdution. The spectrathe concentrationprofilesand
the subsguentesimatesof self-diffusioncoefficientsof theresdved componentsareconsistentvith
thoseobtainal by GRAM. Therestts of this papertogetherwith thosefrom our previous study**2
suggesthat PMF canbe usefulfor mixture resdution problens.

Thisinvestigation showsthepossiblity of applyingPMFto analytical curveresolution, althoughin
this casewe havenot madeuseof thefeatuesthata leastsquaesmethodpernits andwhich cannot
be appliedin aneigenvetor analyss. Non-negéivity constrants area usefulfeatureof PMF, since
mostphysically meaurablequantties aretheoretially non-ngyative. Suchconstaintsaregeneraly
very helpful in environnental applicaions of PMF.”~*° Howeve, the resultsof this investigaton
showedthat biaswasintroduced whennon-nejativity wasactive Smallamplitude negatiwe values
derivefrom the randam noiseof the instrument.Forcing all the negatiwe valuespositivewill change
thedatastructureandthusintroduce bias.This biasprodu@dactivenon-neativity constrant resuls
thatwere slightly worsethanthoseobtainal when the constrant wasoff.

Consicering the speedof the processing,PMF is slowerthan GRAM, since PMF is an iterative
fitting algorithm.However realdatacontainnoise or distortionsfrom theideal error-freemodd, and
direct algorithmsmay not alwaysfind the optimumsolution.*? Moreover, direct algorithmssuchas
GRAM andDTD areunableto include datapoint weighting or constrénts suchasnon-negatity,
unimodadity, etc.whichin mary case may be usetl in finding the optimum solution.
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