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SUMMARY

Positive matrix factorization (PMF) is a least squares approach to factor analysis which was originally developed
for environmental data analysis and has been applied to several problems in resolving sources of environmental
pollutants. PMF has been used as both a two-way and three-way data analysis tool. In this investigation, three-
way data arrays were used to explore the ability of PMF in curve resolution. Pulsed gradient spin echo (PGSE)
nuclear magnetic resonance (NMR) data were measured for spectral mixtures where the concentrations of the
compounds decay exponentially. Three-way data arrays were constructed by packing different parts of the data
from single experiments and were analyzed with three-way PMF to obtain the NMR spectra, decay profiles and
the self-diffusion coefficients of constituents. 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Instruments that generate two-way data arrays are now common in the analytical laboratory.
Depending on whether the measurements are made on single or multiple samples, two- or three-way
data can be subsequently formed. Calibration and spectral resolution are major foci of data analysis
methods in analytical chemistry.

In two-way cases, research has focused on the resolution of complex mixtures and the assessment
of peak purity based on the interpretation of hyphenated chromatographic data.1 A variety of
algorithms, mostly based on principal component analysis (PCA), have been proposed and the
evolutionary character of hyphenated chromatographic data has been utilized to alleviate or eliminate
ambiguity.

For three-way data, parallel factor analysis (PARAFAC) is the most commonly used method.2 The
trilinear structure of a data array can provide an identifiable solution that does not contain the
rotational freedom that exists in all two-way analyses.3 For a particular case where there are only two
‘slices’ in one of the orders of the three-way data array, the factorization can be done by solving a
rectangular generalized eigenvalue–eigenvector problem using the generalized rank annihilation
method (GRAM).4

Similar mathematical treatments with different physical models appear in data analysis used in
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otherscientificfields.Forexample,PCA,PARAFAC andother factorization techniquesarealsoused
for receptormodeling of environmentaldatain orderto identify andapportion pollutantsinto various
sources.5

Recently, a new mathematical technique called positive matrix factorization (PMF) was
developed.6 This techniquediffers from PCA in that individual error estimatesof eachdatapoint
areutilized andnon-negativity andotherconstraints on the factors areintegratedinto the analysis.
PMFcanbeapplied to bothtwo-wayandthree-way dataarrays.PMFhasbeenusedin theanalysisof
environmental data,and specifically for receptor modeling of pollutants,and there have beena
numberof successfulapplications.7–10

As a generalmathematical tool, PMF should alsobeuseful for mixture resolution problemsasare
other chemometrics techniques. A simulated spectroscopic-like example11 and a data set of
fluorescencespectrographic measurements12 havebeenpreviously usedto demonstratethepotential
of PMFfor curveresolution. It is theaimof thisstudy to examinetheuseof three-wayPMFfor curve
resolution of experimentaldata.Thethree-waydatapreviouslyanalyzedby Windig andAntalekwith
GRAM13 havebeenemployed to testPMF.

POSITIVE MATRIX FACTORIZATION

The PMF algorithm is described in detail elsewhere,6 so only a brief outline will be given here.
Supposing X is an m� n� q three-waydataarraywhich results from the linear combinationof p
intrinsic factors in the measurementsystem, the trilinear decomposition of X canbemodeled as

X = A 
 B
 C�E (1)
or

X ijk �
Xp

h�1
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whereA, B and C are the resolved two-way conforming factors for eachof the three modes,the
symbol6 representsthe tensorproduct andE contains the residuals.

PMF solvesan optimal weightedleastsquarestask by assigningmorerealistic weights for each
data point Xijk, wijk = 1/�ijk

2, where the values of �ijk are the uncertainties associated with the
measurements.Typically, �ijk is the uncertainty in the measuredvalue Xijk.

The trilinear modelcanbesolved by minimizing the objective function
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As a default option,PMF usesa penalty function to constrain the factors to be non-negative,as
mostphysical conforming factors arenevernegative. It alsoincludesregularization of the factors.6

The factors aresolved by an iterative optimization of both factors in eachstep,6 which makesthe
algorithm efficient. A comparisonof PMF12 has beenmadewith direct trilinear decomposition
(DTD)14 andseveral othertril inearmodel programsthatarebasedonalternatingleastsquares(ALS)
methods. PMFwasfoundto bemuch fasterthantheother ALS methodstested. Althoughit wasnotas
fastasDTD, DTD producedpoor resultsfor someill-conditionedproblems.

PGSENMR DATA

ThePGSENMR dataweredescribedby Windig andAntalek.13 PGSENMR usesa pulsedmagnetic
field gradientwhich influencesthesignal intensity of theresonancefrom thecomponentsin solution.
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The contributionof eachof the componentsto the signal canbe described by

A�i�
A0�i� � eÿD�i��
g��2��ÿ�=3� �4�

whereA(i) is theamplitude of componenti, D(i) is theself-diffusion coefficientof componenti (m2

sÿ1), A0(i) is theamplitude with no magneticgradients,g is thegyromagneticratio of the1H nucleus
(radSÿ1 Tÿ1), g is themagnetic gradientstrength(T), which is variedduringtheexperimentsothat
theincrementsfor subsequentg2 valuesarethesame,D is thediffusion time (s)and� is thegradient
width (s). The valueof the term �2 (Dÿ �/3) is given for a certainexperiment.

The naturallogarithm of the valuesof A(i) is a linear function of g2 wherethe slope is

s� ÿD�i�g2�2��ÿ �=3� �5�
The slope can be calculated by simple regression. Since the experimental signal decays

exponentially for everycomponentandthedecayis a functionof theself-diffusioncoefficient,PGSE
NMR is usedto determine thesecoefficients.The diffusion coefficient canthenbe calculatedas

D�i� � ÿ s
7 � 157� 1016� c

�6�

In thisequation thevalueof 7⋅157� 1016 wassubstitutedfor g2, andc is thevalueof �2 (Dÿ �/3),

Figure1. Two-factorPMFresultsfor mixture1: top,resolvedandreferencespectraof TX-100;bottom,resolved
andreferencespectraof gelatin.

POSITIVEMATRIX FACTORIZATION 359

 1998JohnWiley & Sons,Ltd. J. Chemometrics, 12, 357–364(1998)



which is different for eachexperiment.
Threesampleswereanalyzedin thePSGEexperiments.Thefirst sampleis amixtureof 0⋅1%w/w

TX-100, a non-ionic surfactant, and 5% w/w gelatin (mixture 1). The experimentresultedin 20
spectrawith 4095datapointseach(ÿ0⋅58to 8⋅1 ppm).Thesecond sample is amixtureof 0⋅15%w/w
di-(C6-Glu), a non-ionic surfactant,and5% w/w gelatin(mixture 2). Theexperimentresultedin 20
spectrawith 4095 data points each (ÿ0⋅58 to 8⋅1 ppm). The third sampleis a mixture of two
components, 2-chloropropionic acid and 2-aminobenzothiozole, 0⋅94% w/w and 1⋅2% w/w
respectively, in dimethyl sulfoxide-d6 (DMSO) (mixture 3). Fifteen spectrawere acquired with
6218pointseach.

DATA ANALYSIS

Accordingto Windig andAntalek,13 thespectraat thebeginningor/andtheendof eachdatasetare
excludedin the dataanalysis becausethey areeithercausedby the self-diffusion of wateror they
deviatesubstantially from theother spectra.Thusonly spectra2–13,spectra2–11andspectra2–15
wereusedfor mixtures1–3respectively. Sincethesignaldecaysexponentially, two differentpartsof
thedatasetcanbeusedto create two datamatrices, where thecorrespondingcolumnsof these two
matricesdiffer by only a scaling factorandthepurespectraandconcentrationprofileswill haveunit
correlation coefficients. A three-way data array constructed by packing such two-way matrices
together will thereforefit atrilinearmodel.Analogousto Windig andAntalek,13 two datamatricesfor
eachdatasetweregeneratedby takingthefirst to the(nÿ1)th andthesecondto thenth spectraof each

Figure2. Two-factor PMF resultsfor mixture 2: top, resolvedand referencespectraof di-(C6-Glu); bottom,
resolvedandreferencespectraof gelatin.
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experimental datasetrespectively, andthusthe three-way dataarraysof thesethreemixtureshave
dimensions 4095� 11� 2, 4095� 9� 2 and6218� 13� 2 respectively, andPMF analyseswere
made.

RESULTS AND DISCUSSION

Error estimatesfor thesemeasurementswerenot availablewith thedata.To makefull useof PMF,
error estimatesare neededfor eachdatapoint, and thus they had to be estimated. PMF provides
variousmodels for errorestimation.An absoluteerrorplusa relativeerrorproportional to thesignal
amplitudewasassumedandtheconstantswerechosen by trial anderror.Examination of equation (3)
suggeststhatthetheoreticalQ valueshould approachthenumberof datapoints in thedataarrayif the
errorestimatesaregoodapproximations to theactualerrors.Therefore PMF wasrun with different

Figure 3. Three-factorPMF resultsfor mixture 3: top, resolvedspectrumof DMSO/water;middle, resolved
spectrumof 2-aminobenzothiozole;bottom,resolvedspectrumof 2-chloropropionicacid.
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constants representingabsoluteandrelative errorsandthePMF resultwith a Q valueclosestto the
theoretical onewasretained.

Theoriginalexperimental datacontainnegativevaluesthatmaybetheresultof instrumentalnoise.
Thedefaultnon-negativity optionwasdeactivatedin ordernot to introducebias.Thecorrectnumber
of componentsof thedatasetwasdeterminedby observationof theresolvedfactors.It wasfoundthat
whenonefactormorethannecessary wasextracted,theresultingspectrumclearlyshowsonly noise.

It wasfoundthat two-factormodels fit mixtures1 and2, but a three-factor modelwasneededfor
mixture 3. The resolved spectra of the componentsin the mixtures are shown in Figures1–3 for
mixtures1–3respectively. Modelswith oneadditional factorwerecalculatedfor eachmixture.These
extrafactorsareshown in Figure4 andappearto consistonly of noise,indicating thatthechoicesfor
numberof factors were correct.

Figure1 showsthe excellent agreement between the resolved andreferencespectrum of gelatin.

Figure4.Extrafactorwhenonefactormorewasusedfor mixtures:top,noisefactorwhenthreefactorswereused
for mixture1; middle,noisefactorwhenthreefactorswereusedfor mixture2; bottom,noisefactorwhenfour

factorswereusedfor mixture 3.

362 Y.-L. XIE, P. K. HOPKEAND P. PAATERO

 1998JohnWiley & Sons,Ltd. J. Chemometrics, 12, 357–364(1998)



Thecorrelationcoefficient is 0⋅995.The agreementbetween theextractedandreferencespectrumof
TX-100 is alsogood, with a correlationcoefficient of 0⋅930.Thesevaluesareessentially identical to
thoseof Windig andAntalek.

The extractedspectraof gelatin and di-(C6-Glu) are plotted in Figure 2 togetherwith their
referencespectra.Goodagreementwasobtained between the calculated andreferencespectrum of
gelatin, with a correlation coefficient of 0⋅993. It is clear from the figure that the main spectral
featuresof di-(C6-Glu) were alsoextracted.However, a lower correlationcoefficient of 0⋅794 was
obtained. Thereis aseriousspectral overlapbetween thespectraof gelatinanddi-(C6-Glu), resulting
in someresidual rotational freedom.Theresultspresentedherearethedirectoutput of thealgorithm
without further adjustment. The correlationcoefficientsfor thesetwo componentswhenderivedby
GRAM are0⋅993 and0⋅800, respectively,13 showing a similar problem with fully resolvingthe di-
(C6-Glu) spectrum.

Including waterandthesolvent, DMSO, mixture 3 actuallycontains four components. However,
similar to theGRAM results, only threesignificantcomponentscould beobtained.Theextrafactorin
a four-factor model canbecharacterizedasnoise (seeFigure4). Shownin Figure3 it appears thata
combined componentof DMSO and water was derived.The two resolved componentsrepresent
2-aminobenzothiozole and 2-chloropropionic acid respectively. Since referencespectrawere not
provided for thesecomponents,no correlationcoefficients between the calculated and reference
spectrawerecomputed.

Table1. Self-diffusioncoefficientsandlinearity of gelatin/TX-100mixture

Self-diffusioncoefficient(m2 sÿ1)

Slopea Eigenvaluea Directa PMFb rc

Gelatin 1⋅32� 10ÿ11 1⋅32� 10ÿ11 1⋅32� 10ÿ11 1⋅31� 10ÿ11/1⋅32� 10ÿ11 1⋅0000
TX-100 9⋅00� 10ÿ11 8⋅96� 10ÿ11 9⋅08� 10ÿ11 8⋅77� 10ÿ11/8⋅85� 10ÿ11 0⋅9998

a Windig andAntalek result.13

b Lower/upperlimits of 99%confidence.
c Correlationcoefficient.

Table2. Self-diffusioncoefficientsandlinearity of gelatin/di-(C6-Glu)mixture

Self-diffusioncoefficient(m2 sÿ1)

Slope Eigenvalue Direct PMF r

Gelatin 1⋅23� 10ÿ11 1⋅23� 10ÿ11 1⋅27� 10ÿ11 1⋅20� 10ÿ11/1⋅24� 10ÿ11 0⋅9999
Di-(C6-Glu) 2⋅32� 10ÿ10 2⋅35� 10ÿ10 NA 2⋅13� 10ÿ10/2⋅24� 10ÿ10 0⋅9998

Seefootnotesto Table1.

Table3. Self-diffusioncoefficientsandlinearity of 2-aminobenzothiozole/2-chloropropionicacid/DMSO/water
mixture

Self-diffusioncoefficient(m2 sÿ1)

Slope Eigenvalue Direct PMF r

DMSO/water 7⋅27� 10ÿ10 7⋅32� 10ÿ10 4⋅92� 10ÿ10 7⋅078� 10ÿ10/7⋅26� 10ÿ10 0⋅9999
2-Aminobenzothiozole 3⋅10� 10ÿ10 3⋅10� 10ÿ10 3⋅00� 10ÿ10 2⋅81� 10ÿ10/2⋅83� 10ÿ10 1⋅0000
2-Chloropropionicacid 3⋅91� 10ÿ10 3⋅91� 10ÿ10 3⋅54� 10ÿ10 3⋅889� 10ÿ10/3⋅90� 10ÿ10 1⋅0000

Seefootnotesto Table1.
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By regressingthenaturallogarithm of thefactorscoresrepresentingthecompound concentrations
in eachmixtureagainsttime,excellentlinearrelationshipswereobtained.Thecorrelationcoefficients
of linear regressionsarelisted in Tables1–3.The99%confidence intervalsfor theslopeswere also
calculated and then the corresponding confidence ranges of the self-diffusion coefficients of the
componentswerecalculatedusing equation (6). The valuesarelistedin Tables1–3alongwith those
of Windig andAntalek.13 Thereareno significant differencesbetween the two sets of results.

CONCLUSIONS

TheresultsshowthatPMF canperform curveresolution. Thespectra, theconcentrationprofilesand
thesubsequentestimatesof self-diffusioncoefficientsof theresolvedcomponentsareconsistentwith
thoseobtained by GRAM. Theresults of this papertogetherwith thosefrom our previousstudy11,12

suggest that PMF canbe usefulfor mixture resolution problems.
Thisinvestigation showsthepossibility of applyingPMFto analytical curveresolution,althoughin

this casewe havenot madeuseof thefeaturesthata leastsquaresmethodpermits andwhich cannot
beappliedin aneigenvector analysis. Non-negativity constraints area usefulfeatureof PMF, since
mostphysicallymeasurablequantities aretheoretically non-negative.Suchconstraintsaregenerally
very helpful in environmental applications of PMF.7–10 However, the resultsof this investigation
showedthat biaswasintroducedwhennon-negativity wasactive. Small-amplitude negative values
derivefrom therandom noiseof theinstrument.Forcing all thenegative valuespositivewill change
thedatastructureandthusintroducebias.This biasproducedactivenon-negativity constraint results
that were slightly worsethanthoseobtained when the constraint wasoff.

Considering the speedof the processing,PMF is slower thanGRAM, sincePMF is an iterative
fitting algorithm.However,realdatacontainnoiseor distortionsfrom theidealerror-freemodel, and
direct algorithmsmaynot alwaysfind the optimumsolution.12 Moreover,direct algorithmssuchas
GRAM andDTD areunableto includedatapoint weighting or constraints suchasnon-negativity,
unimodality, etc.which in many cases may beuseful in finding the optimum solution.
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