
Estimation of chemical rank of a three-way array using

a two-mode subspace comparison approach

Hong-Ping Xiea,b, Jian-Hui Jianga, Ning Longa, Guo-Li Shena,
Hai-Long Wua, Ru-Qin Yua,*

aState Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering,

Hunan University, Changsha 410082, China
bPharmic Department, Soochow University, Suzhou 215007, China

Received 25 April 2002

Abstract

When two matrices are formed by unfolding a three-way array along two full-rank modes and when two subspaces with the

same size are constructed by taking the first principal component vectors of the same mode space in these two unfolded

matrices, the principal components corresponding to the chemical species should behave identically in both subspaces, while

the components corresponding to the noise contribution should behave differently in these two subspaces. Based on the

difference of the behavior of the chemical signal and noise components, the two-mode subspace comparison (TMSC) approach

has been proposed to estimate the chemical rank of a three-way array with two full-rank modes. Two outstanding features of the

proposed method have been demonstrated. It is robust to a very high degree of collinearity between the spectra or

chromatograms involved, or to a very high level of noise contained in a three-way array. The method has been shown to be

useful for the treatment of three-way analytical data sets obtained by high-performance liquid chromatography-diode array

detector (HPLC)-DAD and excitation–emission fluorescence spectroscopy.
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1. Introduction

The three-way data for a chemical system, which

contains more information than second-order ones,

become easily available with modern analytical instru-

mentation. Analysis of such data sets has been the

subject of a series of analytical chemistry research [1].

The first step in three-way data analysis is to deter-

mine the number of chemical components involved in

the analytical system, which is also called the chem-

ical rank. To circumvent the difficulty in the determi-

nation of the correct chemical rank, some methods

that are insensitive to the estimated component num-

ber of a three-way array have been proposed [2–7].

But these methods still require an estimated chemical

rank, which is generally larger than the real one of a

three-way data array studied. Therefore, searching for

efficient methods of estimating the chemical rank of a

three-way array is still of considerable interest.
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Kruskal [8] has discussed the rank of a three-way

array. A three-way array can be decomposed into a

number of triads, each being a tensor product of three

vectors. The minimum number of these triads, which

can describe rightly the decomposition model, is

called the rank of the three-way array [8] (i.e., the

component number of the one). This rank may be

greater than the maximal dimension of three modes of

the array, which is a different characteristic feature

from a second-order data set. Therefore, the method of

estimating the component number of a three-way

array should be different from that for a second-order

data set.

The physical meaning of component number may

be different for different decomposition models [9–

14] of a three-way array. For PARAFAC [11] and its

modification versions, the component number of a

model is the chemical rank of the three-way array (i.e.,

the number of chemical species). Bro [15] divided the

methods of estimating component number into three

groups: methods based on split-half experiments,

those examining the residual variation, and those

utilizing the field knowledge concerning the data set

being modeled.

Recently, Louwerse et al. [16] proposed two alter-

native generalizations of the two-way cross-validation

method [i.e., the expectation maximization (EM) and

the leave-bar-out (LBO) approaches] to estimate the

component number of a Tucker3 model. In fact, these

two methods belong to the category of methods based

on examining the residual variation, and the compo-

nent numbers estimated by these two methods are all

the principal component numbers of the Tucker3

model rather than the chemical rank of the system

as discussed above. More recently, we proposed a

principal norm vector orthogonal projection (PNVOP)

approach [17], which carried out the estimation of the

chemical rank of a three-way array. An unfolded

matrix should be formulated by unfolding a three-

way array along one of its full-rank modes. When an

orthogonal projection is carried out along the column

space of the unfolded matrix using an orthogonal

projection matrix formulated by a principal norm

vector, which is the maximum Frobenius norm vector

in the column space of the unfolded matrix, the

mathematical rank would decrease by one for the

column space of the unfolded matrix. After this kind

of the projection is carried out in n circles for a three-

way array containing n chemical species, the projec-

tive residual matrix would become a noise matrix. At

this time, the decrease n of the mathematical rank

would be equal to the chemical rank of the three-way

array. According to the variation of the projective

residual, one can estimate the chemical rank of a

three-way array. This method is robust in resisting

heteroscedastic noise. It has been successfully applied

for some simulated and real data arrays. When the

degree of correlation of spectra or chromatograms or

the noise level in a three-way data array is too high,

the PNVOP method might have some difficulties.

In this paper, an alternative approach for estimating

the chemical rank of a three-way array, called two-

mode subspace comparison (TMSC) method, is pro-

posed. Two matrices are formulated by unfolding a

three-way array along its two full-rank modes, say,

spectral and chromatographic modes. One constructs

two principal component subspaces of the same size

corresponding to the same mode in these two

unfolded matrices. In the case of HPLC-DAD three-

way data, for example, one takes the spectral or

chromatographic principal component subspace. The

chemical rank is estimated by comparing these two

principal component subspaces of the same mode.

When the component number taken for the two

subspaces is less than or equal to the chemical rank

of this system, all the vectors of the two subspaces are

the principal component vectors and are mainly com-

prised of the projections of chemical signal vectors,

that is, they are the linear combinations of the same

signal base vectors. Approximately, these two sub-

spaces may be represented by each other, and their

difference should be very small. Otherwise, these two

subspaces should contain many noise vectors.

Because of the randomness of noise, in the latter case,

these two subspaces should not share the same set of

the base vectors and cannot be represented by each

other. At this time, the difference of these two sub-

spaces should increase significantly. Therefore, one

can estimate the chemical rank according to the

residual variation of these two subspaces with the

change of the estimated component number of the

three-way array.

The proposed method seems to belong to the

second group according to the classification of Bro

[15] (i.e., methods based on examining the residual

variation, although here the residual refers to that of
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two subspaces, rather than the residual in the ordinary

sense of model fitness measure). This method is also

different from ordinary rank estimations for second-

order data [18,19]. It has two outstanding advantages

of resisting a very high degree of correlation of

spectra or chromatograms and a very high level of

noise contained in a three-way array.

2. Theory

2.1. Trilinear model

The TMSC approach is based on the trilinear

model. When the three-way data set is an (I� J�K)

array R, a trilinear model can be expressed as [15]:

I�J�K ¼
XN
n¼1

xn � yn � zn þ I�J�K ð1Þ

where xn, yn, and zn are the response profiles of the nth

response-active component along x, y, and z axes,

respectively; N is the component number; � is the

tensor product; and E is the measurement error array.

Eq. (1) might also be expressed as three systems of

matrix equations along the coordinate axes:

R��k ¼ XdiagðzðkÞÞYT þ E��k ðk ¼ 1; 2;: : :;KÞ ð2Þ

R�j� ¼ ZdiagðyðjÞÞXT þ E�j� ð j ¼ 1; 2;: : :; JÞ ð3Þ

Ri�� ¼ YdiagðxðiÞÞZT þ Ei�� ði ¼ 1; 2;: : :; IÞ ð4Þ

where the superscript T denotes the matrix trans-

position; R
SSk is the kth matrix slice of R I� J� K along

the z-axis; R
SjS is the jth matrix slice along the y-axis;

RiSS is the ith matrix slice along the x-axis; diag(z(k)) is

the diagonal matrix whose diagonal elements are the

corresponding ones of the kth row vector z(k) of the

response profile matrix ZK� N; and ZK� N consists of

the response profile vectors zn (n = 1,2,. . .,N) of the N
response-active components as expressed by the fol-

lowing equation:

ZK�N ¼ ðz1; z2; . . . ; zN Þ ð5Þ

Similarly, diag(y( j)) is formed by the jth row vector

y( j) of YJ� N expressed as:

YJ�N ¼ ðy1; y2; . . . ; yN Þ ð6Þ

and diag(x(i)) is comprised of the ith row vector x(i) of

XI � N, which denotes a response matrix consisting of

the response profiles xn (n = 1,2,. . .,N):

XI�N ¼ ðx1; x2; . . . ; xN Þ ð7Þ

Trilinear resolutions are carried out for all compo-

nents at the same time or one by one for each

component according to Eqs. (2)–(4). The goal of

the trilinear resolution is to resolve the response

profiles XI� N , YJ� N, and ZK� N for obtaining the

chemical information concerning the measured pro-

cesses, and the first step of the trilinear resolution is to

estimate the chemical rank N of the three-way array

RI� J� K.

2.2. Two-mode subspace comparison approach

By unfolding a three-way array R(I� J�K)

according to Eqs. (2)–(4), one can formulate six

different unfolded matrices [17,20]. They are pairwise

equivalent, and the three unfolded matrices with

different properties could be expressed as:

RAI�JK ¼ ½R��1;R��2;: : :;R��K 	 ð8Þ

RBJ�IK ¼ ½RT
��1;RT

��2;
: : :;RT

��K 	 ð9Þ

RCK�IJ ¼ ½R�1�;R�2�;: : :;R�J �	 ð10Þ

When unfolding a three-way array along a full-

rank mode, say I-mode as Eq. (8), the column space of

the unfolded matrix RA involves all JK vectors

contained in all K matrix slices of the three-way array

R, and the chemical rank of column space of RA is

equal to that of R [17]. Because the I-mode is a full

rank (i.e., the row space of RA is a full rank), the row

space of the unfolded matrix RA should contain all

information concerning the chemical rank of the three-

way array R. Therefore, one can estimate the correct

chemical rank of a three-way array through the

chemical rank estimation of the row and column

R E
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spaces of its unfolded matrices along its full-rank

mode.

Suppose that mode K is the sample or concentra-

tion mode, and modes I and J are the spectral and

chromatographic ones of full rank, respectively. To

explain the TMSC approach, take a pair of Eqs. (8)

and (9) formed by unfolding R along modes I and J of

full rank, respectively, as an example. The column

space of RAI� JK is constructed by all JK spectral

vectors of dimension (I� 1) of K samples. These

spectral vectors of dimension (I� 1) of each sample

are juxtaposed side by side with each other. The row

space of RA is formed by all chromatographic vectors

of K samples, and each row vector of dimension

(1� JK) of RA is formed by joining with the head

to end all K chromatographic vectors of dimension

(1� J) at the same spectral wavelength of K samples.

Similar arguments can be used to describe RBJ� IK.

Its column space is constructed by juxtaposing the

chromatographic profiles of K samples and its row

vectors are formed by joining spectral profiles of K

samples.

The singular value decomposition of the matrices

RA and RB gives:

RAI�JK ¼ UA�AVT
A ð11Þ

RBJ�IK ¼ UB�BVT
B ð12Þ

here UA is an I� I orthogonal spectral matrix with

each column vector denoting a spectrum for one

principal component; VA denotes a JK� JK orthogo-

nal chromatographic matrix, each column vector

being formed by joining with the head to end K

chromatogram vectors of the same principal compo-

nent in K samples; UB is a J� J chromatographic

matrix with each column vector being the chromato-

graphic profile of one principal component; VB is an

IK� IK spectral matrix with each column vector

being formed by joining with the head to end K

spectral vectors of the same principal component in

K samples; �A and �B are the diagonal singular value

matrices of RA and RB, respectively.

Take the spectral space as an example (i.e., the two

column spaces of UA and VB) to explain the TMSC

method. Let the spectra of the first i principal compo-

nents in UA and VB (i.e., the first i column vectors of

UA and VB) make two matrices U1 and V1, respec-

tively. The column spaces of matrices U1 and V1

correspond to the two subspaces of column spaces of

UA and VB, respectively:

U1 ¼ ½u1; u2; . . . ; ui	I�i ði ¼ 1; 2; . . . ; IÞ ð13Þ

V1 ¼ ½v1; v2; . . . ; vi	IK�i ði ¼ 1; 2; . . . ; IÞ ð14Þ

here um and vm (m = 1,2,. . .,i) are the mth column

vectors of UA and VB, respectively. Rearrange matrix

V1 to formulate an (I�Ki) spectral matrix V2, that is,

V2 ¼ ½v1;1; v1;2; . . . ; v1;K ; v2;1;v2;2; . . . ; v2;K ; . . . ; vi;1;

vi;2; . . . ; vi;K 	I�Ki ð15Þ

Here vectors vm,1,vm,2,. . .,vm,K are formed by rear-

ranging vector vm (m = 1,2,. . .,i) as the following

equation:

½vm;1; vm;2; . . . ; vm;k 	I�K

¼

vmð1Þ vmðI þ 1Þ . . . vmððK 
 1ÞI þ 1Þ

vmð2Þ vmðI þ 2Þ . . . vmððK 
 1ÞI þ 2Þ

] ] ] ]

vmðIÞ vmð21Þ . . . vmðKIÞ

2
666666664

3
777777775
I�K

ð16Þ

where vm(1),vm(2),. . .,vm(KI) are all the elements of

the column vector vm of the matrix V1 in Eq. (14). In

Eq. (16), the first to Kth column vectors express,

respectively, the spectra of the mth principal compo-

nents of the first to Kth sample matrices in RB. Eq.

(15) is the spectral matrix of the first i principal

components in the K sample matrices. Therefore,

Eqs. (13) and (15) all are the spectral matrices of

the first i principal components in these two unfolded

matrices RA and RB, respectively, and their column

spaces are two same spectral spaces of the first i

principal components.

When the number i of principal components is less

than or equal to the chemical rank N, each principal

component is constructed by a projection of N pure

spectral vectors s1,s2,. . .,sN, that is, each principal

component is a linear combination of s1,s2,. . .,sN.
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Since there exists noise in the system, the noise vector

also makes a contribution to the principal component

vectors. Now, any principal component vectors um
and vm,k of Eqs. (13) and (15), respectively, can be

expressed as:

um ¼ cm;1s1 þ cm;2s2 þ . . .þ cm;N sN þ cm;0su;0

ðm ¼ 1; 2; . . . ; iÞ ð17Þ

vm;k ¼ cmk;1s1 þ cmk;2s2 þ . . .þ cmk;N sN þ cmk;0sv;0

ðm ¼ 1; 2; . . . ; i; k ¼ 1; 2; . . . ;KÞ ð18Þ

where cm,n and cmk,n (n = 1,2,. . .,N) are the combina-

tion coefficients of the pure vector sn (n = 1,2,. . .,N)
for the principal component spectra um and vm,k,

respectively; and su,0 and sv,0 are noise vectors con-

tributing to UA and VB, respectively. One notices that

here the difference of the noise contributions in the

formation of UA and VB is specified. The combination

coefficients express the contribution of the pure spec-

tral vectors and the noise to the principal component

vectors of the spectra. The following relationships

hold:

Ncm;0su;0N2bNcm;nsnN2 ðn ¼ 1; 2; . . . ;NÞ ð19Þ

Ncmk;0sv;0N2bNcmk;nsnN2 ðn ¼ 1; 2; . . . ;NÞ ð20Þ

where N�N2 is the Frobenius norm of a vector. When

only taking into consideration the signal base vectors

for vectors um and vm,k in Eqs. (17) and (18), respec-

tively, these two principal component vectors of the

spectra have identical base vectors and all vm,k can be

represented by vectors um (m = 1,2,. . .,i), that is,

vm;k ¼ c1u1 þ c2u2 þ : : : þ ciui

ðm ¼ 1; 2; . . . ; i; k ¼ 1; 2; . . . ;KÞ ð21Þ

Here again, c1,c2,. . .,ci are combination coeffi-

cients. In reality, there must be a noise contribution

to the principal component vectors vm,k and um of

the signals. The randomness of the noise distribution

makes the accumulation of the noise in these principal

components be different, that is, su,0 and sv,0 in

Eqs. (17) and (18), respectively, are not identical. In

Eq. (21), the noise involved in all um (m = 1,2,. . .,i)

cannot represent completely the noise contribution

involved in vm,k. So Eq. (21) should also contain a

noise term s0, which is not identical to sv,0 in Eq. (18),

that is,

vm;k ¼ c1u1 þ c2u2 þ : : : þ ciui þ c0s0

ðm ¼ 1; 2; . . . ; i; k ¼ 1; 2; . . . ;KÞ ð22Þ

For different terms in Eq. (22), the following relation-

ship holds:

NcjujN2HNc0s0N2 ðj ¼ 1; 2; . . . ; iÞ ð23Þ

As all the vectors in Eq. (22) are normalized, Eq. (23)

becomes:

AcjAHAc0A ðj ¼ 1; 2; . . . ; iÞ ð24Þ

One constructs the orthogonal projective matrix P

using all the vectors u1,u2,. . .,ui of the matrix U1

expressed in Eq. (13):

P ¼ I 
 U1UT
1 ð25Þ

where I is an identity matrix. When the vector vm,k
projects along U1 with P, the residual vector rsm,k for

vm,k will be expressed as:

rsm;k ¼ Pvm;k

¼ ½I 
 ðu1; u2; . . . ; uiÞðu1; u2; . . . ; uiÞT	
� ðc1u1 þ c2u2 þ : : : þ ciui þ c0s0Þ ð26Þ

Because {u1,u2,. . .,ui} is an orthogonal set of vectors,

and the normalized noise vector s0 is not orthogonal to

this set, Eq. (26) can be written as:

rsm;k ¼ ð
c0;1Þu1 þ ð
c0;2Þu2 þ . . .

þ ð
c0;iÞui þ c0s0 ð27Þ

where c0,j= c0uj
Ts0( j= 1,2,. . .,i). In Eq. (27), one has:

Nrsm;kN2VðAc01Aþ Ac02Aþ . . .þ Ac0iAþ Ac0AÞ
(28)

As the correlation between the signal and noise is

very small, and considering Eq. (24), the value of the

right side of the inequality (Eq. (28)) should be very

small. In other words, the residual of the vector vm,k
must be very small.
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When the rearranged matrix V2 (Eq. (15)) of the

matrix V1 projects along U1 (Eq. (13)) with P, from

Eq. (26), one has:

RS ¼ PV2

¼ ½rs1;1; rs1;2; . . . ; rs1;K ; rs2;1; rs2;2; . . . ; rs2;K ; . . . ;

rsi;1; rsi;2; . . . ; rsi;K 	I�Ki ð29Þ

For the Frobenius norm of the residual matrix RS

of the matrix V2, one has:

ðNRSN2Þ2V
Xi

m¼1

Xk
k¼1

Nrsm;kN2 ð30Þ

From Eqs. (28) and (30), one might make the

following conclusion. When the number i of principal

components is less than or equal to the chemical rank

N of a three-way array, which implies that the size of

two spectral subspaces of the unfolded matrices RA

and RB is less than or equal to N and the vectors of

these two subspaces correspond to principal compo-

nents of the spectra, the Frobenius norm of the

projective residual matrix RS should be very small.

That is to say, the difference between these two

subspaces is very small.

When i>N, the vectors uN + 1,uN + 2,. . .,ui in Eq.

(13) do not have the same set of base vectors as

the rearranged vectors of {vN + 1,1,vN + 1,2,. . .,vN + 1,K,

vN + 2,1,vN + 2,2,. . .,vN + 2,K,. . .,vi,1,vi,2,. . .,vi,K} in Eq.

(15), which are formed by rearranging vectors

{vN + 1,vN + 2,. . .,vi} in Eq. (14) according to Eq. (16),

as these vectors all are the noise ones. These vectors

cannot be represented by each other, or an expression

similar to Eq. (22) does not hold for these vectors. The

Frobenius norm of the residual vectors of these vectors

projecting along U1 with P should increase signifi-

cantly. Therefore, one can estimate the chemical rank

N according to the variation of Frobenius norm of the

projective residual matrix of two spectral principal

component subspaces of the unfolded matrices RA

and RB with the subspace size (i.e., the component

number).

In the J-mode spaces of full rank of the unfolded

matrices RA and RB (i.e., the chromatographic spaces

denoted by the column space of the matrices VA and

UB in Eqs. (11) and (12), respectively), one can also

use the TMSC method to estimate the chemical rank

of the three-way array, which is similar to the spectral

spaces expressed by the column space of the matrices

UA and VB.

3. The TMSC algorithm

Suppose that I, J, and K modes are the spectral,

chromatographic, and sample (or concentration) ones,

respectively. The TMSC algorithm for the spectral

space consists of the following steps:

1. Unfold the three-way array RI� J� K along the two

modes of spectral and chromatographic profiles to

form the unfolded matrices RAI � JK and RBJ� IK

according to Eqs. (8) and (9), respectively.

2. Make the singular value decompositions for RA

and RB to obtain two spectral matrices UA and VB

of principal components according to Eqs. (11) and

(12), respectively.

3. Let the component number i = 1, and take the two

spectral submatrices (I� i) U1 and (IK� i) V1 of

the matrices UA and VB according to Eqs. (13) and

(14), respectively.

4. Rearrange the (IK� i) matrix V1 to form the

(I�Ki) matrix V2 according to Eqs. (15) and (16).

5. Construct a projection matrix P with the matrix U1

according to Eq. (25), and project V2 along U1 with

P to obtain the residual matrix RS of V2 according

to Eq. (29).

6. Calculate the Frobenius norm FN(i) of RS, and

record this value and the corresponding component

number i. Let the component number i= i + 1 and

then the algorithm is returned back to step 3.

7. Plot FN(i) versus i. Examine the trend of the curve to

see whether a sudden or a sharp turning point of

increase of FN(i) with an increase of i occurs; if so,

terminate the calculation. Estimate the chemical

rank of the three-way array as the value of i in the

FN(i) versus i curve corresponding to the turning

point.

The algorithm can easily be extended to the case of

the two chromatographic spaces corresponding to the

two matrices VA and UB in Eqs. (11) and (12),

respectively. All programs were written in MATLAB.
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4. Experimental

4.1. The simulated HPLC-DAD data

Three groups of data have been simulated. Each

group of data contains three chemical species. The

pure spectral profile for each of the three components

is simulated as follows:

s ¼ k1gsð4i
 3;m1; n1Þ þ k2gsð4i
 3;m2; n2Þ
ði ¼ 1; 2;: : :; 50Þ ð31Þ

where gs(x,m,n) = exp[
 (x
m)2/(2n2)], and the pure

chromatographic profile for each of the three compo-

nents is expressed as:

c ¼ kgsð4i
 3;m; nÞ ði ¼ 1; 2;: : :; 20Þ ð32Þ

All the parameters for the spectral and chromato-

graphic profiles expressed in Eqs. (31) and (32),

respectively (i.e., k1, m1, n1, k2, m2, n2, k, m, and n)

are given in Table 1. The correlation coefficient for

the aforementioned spectral or chromatographic pro-

files between components i and j is listed as Rij in

Table 1.

The relative concentrations of the three compo-

nents in the 10 samples contained in a three-way data

array are simulated by random numbers of uniform

distribution in the region [0,Ci], where i= 1,2,3 for

components 1, 2, and 3, respectively, and Ci denotes

the maximum relative concentration of component i.

The parameters C1, C2, and C3 for three groups of the

data arrays are shown in Tables 2–4. The matrices X

of spectral mode, Y of the chromatographic mode, and

Z of the concentration mode are formed according to

Eqs. (7), (6) and (5), respectively.

The homoscedastic noises added in the first, sec-

ond, and third groups of the three-way arrays are

simulated by random numbers of normal distribution

with zero mean and standard deviations shown in

Tables 2–4, respectively. The heteroscedastic noise

with relative intensities of different ratios with respect

to the signals (these ratios shown in Tables 2–4) is

involved in the three groups of data arrays. The

response matrices R
SSk (k = 1,2,. . .,10) of the 10 sam-

ples in each group of the data are formulated accord-

ing to Eq. (2). All the three-way data simulated are

(50� 20� 10) arrays.

Table 1

Spectral and chromatographic parameters and correlation coefficients for three groups of the simulated HPLC-DAD data

First group Second group Third group

Parameters for pure spectral profiles expressed in Eq. (31)

Component 1 k1 = 0.5, m1 = 60, n1 = 10 k1 = 0.5, m1 = 68, n1 = 10 k1 = 0.4, m1 = 50, n1 = 8

k2 = 0.4, m2 = 110, n2 = 12 k2 = 0.3, m2 = 122, n2 = 10 k2 = 0.3, m2 = 80, n2 = 14

Component 2 k1 = 0.5, m1 = 70, n1 = 22 k1 = 0.5, m1 = 70, n1 = 8 k1 = 0.5, m1 = 90, n1 = 10

k2 = 0.3, m2 = 130, n2 = 20 k2 = 0.3, m2 = 120, n2 = 7 k2 = 0.2, m2 = 120, n2 = 10

Component 3 k1 = 0.5, m1 = 55, n1 = 20 k1 = 0.5, m1 = 72, n1 = 10 k1 = 0.5, m1 = 120, n1 = 11

k2 = 0.3, m2 = 100, n2 = 15 k2 = 0.3, m2 = 118, n2 = 10 k2 = 0.2, m2 = 160, n2 = 8

Parameters for pure chromatographic profiles expressed in Eq. (32)

Component 1 k= 0.5, m = 35, n= 10 k = 0.5, m= 28, n= 10 k= 0.4, m = 20, n= 5

Component 2 k= 0.5, m = 40, n= 5 k = 0.5, m= 30, n= 7 k= 0.5, m = 40, n= 8

Component 3 k= 0.5, m = 45, n= 10 k = 0.5, m= 32, n= 10 k= 0.5, m = 60, n= 6

Correlation coefficients

Spectraa R12 = 0.7929,

R13 = 0.7588,

R23 = 0.7370

R12 = 0.9639,

R13 = 0.9402,

R23 = 0.9617

R12 = 0.2840,

R13 = 0.3750,

R23 = 0.2294

Chromatogramsa R12 = 0.7177,

R13 = 0.7242,

R23 = 0.7480

R12 = 0.9447,

R13 = 0.9297,

R23 = 0.9449

R12 = 0.2540,

R13 = 0.3208,

R23 = 0.2530

a The correlation coefficient for spectral or chromatographic profiles between components i and j is expressed as Rij.
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4.2. The fluorescence spectral data for anthracene-

type compounds

Eight mixture samples of anthracene, 9,10-dime-

thylanthracene, 1,2:5,6-dibenzanthracene, and 2-ami-

noanthracene were prepared in cyclohexane solvent,

and the component concentrations of each sample are

shown in Table 5. The fluorescence spectra were

recorded using a HITACHI F4500 fluorescence spec-

trophotometer with a wavelength scan speed of 1200

nm/min. A range of 250–418 nm of excitation wave-

length with the interval of 4 nm and a range of 352–

500 nm of emission wavelength with the interval of 4

nm were used. The effect of Rayleigh scattering was

corrected by background subtraction using a solvent

blank. A (38� 43� 8) data array was obtained for

this experiment.

4.3. The excitation–emission fluorescence spectra of

the dye mixtures

The fluorescence dyes of acridine, fluorescein, and

rhodamine B, coexisting in a liquid laser, were used to

Table 3

Rank estimation for the second group of the simulated HPLC-DAD

data of three components

C1= 1.0, C2= 1.0,a homoscedastic noise 0.20% and heteroscedas-

tic noise 0.20%

C3
a 0.80 0.20 0.15 0.12 0.10 0.05

Rank of SSb 3 3 3 3 3 2

Rank of CSc 3 3 3 3 3 2

C1= 1.0, C2= 1.0, C3 = 1.0,a and homoscedastic noise 0.20%

Heteroscedastic noise (%) 0.60 1.0 2.0 3.0 4.0 5.0

Rank of SSb 3 3 3 3 3 3

Rank of CSc 3 3 3 3 3 2

C1= 1.0, C2= 1.0, C3 = 1.0,a and heteroscedastic noise 0.20%

Homoscedastic noise (%) 0.10 0.30 0.60 0.80 1.00 1.30

Rank of SSb 3 3 3 3 3 d

Rank of CSc 3 3 3 3 3 d

a The maximum relative concentration.
b The rank of the spectral space.
c The rank of the chromatographic space.
d The rank estimation failed.

Table 4

Rank estimation for the third group of the simulated HPLC-DAD

data of three components

C1= 1.0, C2 = 1.0,a homoscedastic noise 0.20%, and heteroscedas-

tic noise 0.20%

C3
a 0.80 0.10 0.05 0.02 0.01 0.005

Rank of SSb 3 3 3 3 3 2

Rank of CSc 3 3 3 3 3 2

C1= 1.0, C2 = 1.0, C3= 1.0,a and homoscedastic noise 0.20%

Heteroscedastic noise (%) 0.50 1.0 5.0 10.0 15.0 20.0

Rank of SSb 3 3 3 3 3 3

Rank of CSc 3 3 3 3 3 3

C1= 1.0, C2 = 1.0, C3= 1.0,a and heteroscedastic noise 0.20%

Homoscedastic noise (%) 0.50 1.00 5.00 10.0 15.0 20.0

Rank of SSb 3 3 3 3 2 or 3 d

Rank of CSc 3 3 3 3 3 d

a The maximum relative concentration.
b The rank of the spectral space.
c The rank of the chromatographic space.
d The rank estimation failed.

Table 2

Rank estimation for the first group of the simulated HPLC-DAD

data of three components

C1= 1.0, C2= 1.0,a homoscedastic noise 0.20%, and heteroscedas-

tic noise 0.20%

C3
a 0.80 0.10 0.04 0.03 0.02 0.01

Rank of SSb 3 3 3 3 3 2

Rank of CSc 3 3 3 3 3 2

C1= 1.0, C2= 1.0, C3 = 1.0,a and homoscedastic noise 0.20%

Heteroscedastic

noise (%)

0.60 1.0 5.0 10.0 15.0 20.0

Rank of SSb 3 3 3 3 3 d

Rank of CSc 3 3 3 3 3 3

C1= 1.0, C2= 1.0, C3 = 1.0,a and heteroscedastic noise 0.20%

Homoscedastic

noise (%)

0.50 1.00 2.00 3.00 4.00 6.00

Rank of SSb 3 3 3 3 3 d

Rank of CSc 3 3 3 3 3 d

a The maximum relative concentration.
b The rank of the spectral space.
c The rank of the chromatographic space.
d The rank estimation failed.

Table 5

The component concentrations of the samples of anthracene-type

compounds (� 10
 2 ppm)

Sample 1 2 3 4 5 6 7 8

Anthracene 0.00 0.00 1.76 1.76 1.76 5.28 5.28 5.28

9,10-

Dimethyl-anthracene

1.52 3.04 0.00 1.52 3.04 0.00 1.52 3.04

1,2:5,6-

Di-benzanthracene

2.00 4.00 2.00 4.00 0.00 4.00 0.00 2.00

2-

Amino-anthracene

1.60 4.80 4.80 0.00 1.60 1.60 4.80 0.00
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prepare six mixture samples with different component

concentrations shown in Table 6. The spectra were

recorded with a HITACHI 850 fluorescence spectro-

photometer with the following parameters: a wave-

length scan speed of 240 nm/min, a range of 450–600

nm of excitation wavelength, a range of 480–620 nm

of emission wavelength, and wavelength intervals all

at 5 nm. The effect of Rayleigh scattering was

corrected by background subtraction using a solvent

blank. A (31� 29� 6) three-way array was obtained.

5. Results and discussions

5.1. The simulated HPLC-DAD data arrays

The three groups of the three-way HPLC-DAD

arrays with the low, middle, and high degrees of

correlation among the coefficients have been simu-

lated to examine the influences of correlation, relative

concentration, and homoscedastic and heteroscedastic

noise on the TMSC method.

For the first group of data arrays with the middle

degree of correlation coefficients of the spectra and

chromatograms, the results of the chemical rank

estimation with TMSC are shown in Table 2. When

both the homoscedastic and heteroscedastic noise are

0.20%, the chemical ranks of the three-way arrays

with both the concentration ratios C3/C1 and C3/C2

down to 0.02 can be estimated accurately by the

TMSC method. For the influence of noise, when the

relative concentrations of three components all are the

same, the chemical rank estimation using TMSC is

reasonably accurate for data arrays with a heterosce-

dastic noise level of up to 15.0% and a homoscedastic

noise level of up to 4.0%. However, a too high level

of noise would result in the failure of estimating

chemical rank, that is, residual variation does not

show a turning point of sharp increase with the

increase of component number in a residual plot.

The residual plots of chemical rank estimation for

the first group of the three-way arrays with the differ-

ent relative concentrations C3
 s are shown in Figs. 1

and 2. The chemical rank estimated in the spectral

space is equal to that estimated in the chromato-

graphic one. From Figs. 1 and 2, one notices that

Table 6

The component concentrations of the fluorescence dye samples

(10
 3 g/l)

Sample 1 2 3 4 5 6

Acridine 0.00 0.00 0.00 0.00 0.24 0.12

Fluorescein 0.12 0.00 0.12 0.24 0.12 0.24

Rhodamine B 0.00 0.11 0.22 0.11 0.22 0.22

Fig. 1. Rank estimation in the spectral space for the first group of the simulated HPLC-DAD arrays with different maximum relative

concentrations C3
 s and the fixed C1 and C2 both as 1.0 and homo- and heteroscedastic noise levels both as 0.20%.
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when the relative concentration of the third compo-

nent is less than or equal to 0.02, if the component

number chosen is less than or equal to the chemical

rank 3 of the three-way array, the Frobenius norm of

the projective residual vector or matrix is very small;

otherwise, the Frobenius norm increases rapidly with

the component number chosen, which denotes that the

noise vectors are added to the two subspaces com-

pared using the TMSC method. When C3 is too small

(i.e., there is a minor component in the system), such

as 0.01, one cannot obtain a correct result of estimat-

ing chemical rank. For 0.01 of C3, the chemical rank

estimated (2) is not equal to the real chemical rank (3)

of the three-way array.

Table 3 shows the results of the second group of

the HPLC-DAD data sets with the high degree of

Fig. 2. Rank estimation in the chromatographic space for the first group of the simulated HPLC-DAD arrays with different maximum relative

concentrations C3
 s and the fixed C1 and C2 both as 1.0 and homo- and heteroscedastic noise levels both as 0.20%.

Fig. 3. The spectral profiles for the second group of simulated

HPLC-DAD data arrays.

Fig. 4. The chromatographic profiles for the second group of

simulated HPLC-DAD data arrays.
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correlation among the coefficients. The spectral and

chromatographic profiles with the high degree of

correlation are plotted in Figs. 3 and 4, respectively.

In Figs. 5 and 6, one can estimate the correct chemical

rank of 3 in both the spectral and chromatographic

spaces for the second group of the simulated HPLC-

DAD data arrays with the component relative con-

centrations C1 = 1.0, C2 = 1.0, and C3 = 1.0, and the

homoscedastic noise level of 0.2% and heteroscedas-

tic noise less than or equal to 4.0%. However, when

the heteroscedastic noise level is increased up to

5.0%, the chemical ranks estimated in the spectral

and chromatographic spaces should be different from

each other, such as 3 and 2 of the chemical ranks

Fig. 5. Rank estimation in the spectral space for the second group of the simulated HPLC-DAD arrays with different heteroscedastic noise levels

and a fixed homoscedastic noise of 0.2%, and the maximum relative concentrations C1, C2, and C3 all fixed as 1.0.

Fig. 6. Rank estimation in the chromatographic space for the second group of the simulated HPLC-DAD arrays with different heteroscedastic

noise levels and a fixed homoscedastic noise of 0.2%, and the maximum relative concentrations C1, C2, and C3 all fixed as 1.0.
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estimated in the chromatographic and spectral spaces,

respectively, for 5.0% of the heteroscedastic noise

level, which might result from different levels of noise

in the two spaces. From Table 3, one notices that an

accurate value can be obtained for the chemical

component number of the data array with a very high

degree of correlation of the pure spectral or chromato-

graphic profiles.

Relatively low correlation coefficients are benefi-

cial for chemical rank estimation of a three-way array.

Table 4 shows the results for the third group of data

arrays with low correlation coefficients of spectra or

Fig. 7. Rank estimation in the spectral space for the third group of the simulated HPLC-DAD arrays with different homoscedastic noise levels

and a fixed heteroscedastic noise of 0.2%, and the maximum relative concentrations C1, C2, and C3 all fixed as 1.0.

Fig. 8. Rank estimation in the chromatographic space for the third group of the simulated HPLC-DAD arrays with different homoscedastic noise

levels and a fixed heteroscedastic noise of 0.2%, and the maximum relative concentrations C1, C2, and C3 all fixed as 1.0.
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chromatograms. Figs. 7 and 8 show Frobenius norm

plots of residuals in the spectral and chromatographic

spaces, respectively, for the third group of the simu-

lated HPLC-DAD arrays with different homoscedastic

noise levels and a fixed heteroscedastic noise of

0.20%, together with C1, C2, and C3 all fixed as 1.0.

One observes an outstanding feature of the TMSC

method in resisting very high degrees of noise under

such conditions, even when the noise is heteroscedas-

tic. From the two figures, it can be seen that when the

homoscedastic noise level is increased, the residuals

of the two subspaces compared would increase, and

when it reaches 15.0%, the turning point of residual

variation is not sharp enough, that is, one may

estimate a chemical rank of 3 or 2. Such a noise level

seems to be the threshold, as for a homoscedastic

noise level of 20.0%, one can hardly estimate cor-

rectly the chemical rank of a three-way array.

Compared to the principal norm vector orthogonal

projection approach [17], the proposed TMSC method

has two outstanding features: for a three-way array

with a very high degree of correlation of spectra or

chromatograms, its chemical rank can also be accu-

rately estimated; a relatively high level of noise, even

when the noise is heteroscedastic, can be resisted in

obtaining the correct value of chemical rank of a

three-way array. However, the TMSC method has a

more strict restriction for a three-way array, that is,

there are two modes of full rank in the data array. The

principal norm vector orthogonal projection method

only requires one mode of full rank in the array.

In real applications, one could estimate the chemical

rank of a three-way array along any one of the two full-

rank modes, such as spectral or chromatographic mode

for an HPLC-DAD data array, and excitation or emis-

Fig. 9. Rank estimation for the fluorescence data of anthracene-type

compounds in the emission spectral space.

Fig. 10. Rank estimation for the fluorescence data of anthracene-

type compounds in the excitation spectral space.

Fig. 11. Rank estimation for the fluorescence dye data in the

emission spectral space.
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sion mode for an excitation–emission fluorescence

three-way array. The estimation of chemical rank along

two full-rank modes could be used as a double check

for each other. Certainly, if the concentration mode is of

full rank, the TMSC method could also be used along

this mode. It is necessary to notice that the two-mode

subspace comparison approach is valid not only for a

trilinear data set but also for a three-way data array with

the two full-rank modes. The former is a more strict

condition than the latter. The TMSC method only

requires that a data array has two full-rank modes.

5.2. The fluorescence three-way data array of

anthracene-type compounds

The correct chemical rank 4 of this data array has

been obtained using the TMSC approach in the

emission and excitation spectral spaces as shown in

Figs. 9 and 10, respectively. When the sizes of two

subspaces compared are increased from 1 to 4, the

variance of the Frobenius norms of the projective

residual matrices in the excitation spectral space is

much different from those corresponding to the emis-

sion space, which implies that there are different noise

levels and backgrounds in these two mode spaces.

Accurate analytical results are easily obtainable by

using the resolution methods of a three-way array.

5.3. The fluorescence dye data

The chemical rank of the fluorescence dye three-

way array of the three components was estimated

using the TMSC method in the emission and excita-

tion spectral spaces, respectively. The results are

shown in Figs. 11 and 12. From these two figures, a

correct chemical rank of 3 can be obtained. The

knowledge of correct chemical rank makes it easy to

resolve the concentration and spectral profiles using

the resolution methods of a three-way array.

6. Conclusions

Two matrices are formed by unfolding a three-

way array along two full-rank modes (i.e., the

spectral or chromatographic modes). Two subspaces

are constructed by using the first i principal compo-

nent vectors of the same mode space (i.e., the

spectral or chromatographic spaces) of the two

unfolded matrices. When the principal component

number i taken is less than or equal to the chemical

rank n of this three-way array, these two subspaces

are very similar to each other, and the Frobenius

norm of the residual matrix formed by the one

subspace projecting along another one tends to be

very small. Otherwise, this norm trends to increase

rapidly with the component number i taken. The

chemical rank of a three-way array can be estimated

according to the variation of this norm with the

component number i. This approach, called two-

mode subspace comparison (TMSC), can accurately

estimate the chemical rank of a data array with a

very high degree of correlation of spectral or chro-

matographic profiles or with a very high level of

noise, including that of heteroscedastic noise. The

chemical ranks of two real systems (i.e., anthracene

type compounds and fluorescence dye samples) have

been estimated successfully using the TMSC ap-

proach.
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