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Abstract

Ž . Ž .Window factor analysis WFA and orthogonal projection resolution OPR are two factor analytical techniques for ex-
tracting component concentration profiles from two-way evolutionary data. Both methods take advantage of the fact that each
component lies in a special region along the evolutionary axis. Theoretical equations are derived to prove that WFA is equiv-
alent to OPR, if errors are ignored. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A variety of factor analytical techniques has been
developed for the purpose of extracting component
concentration profiles from evolutionary processes.

) Corresponding author.

These methods take advantage of the fact that each
component lies in a special region along the evolu-

Ž . w xtionary axis. Window factor analysis WFA 1 and
Ž . w xorthogonal projection resolution OPR 2,3 are two

of them. Both are based upon principal component
analysis. By locating the region of existence of a
component, the concentration profile of that compo-
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nent can be determined. The two procedures perform
principal component analysis on the submatrix com-
prising the zero-concentration region of each compo-
nent. They differ in the way the concentration pro-
files are obtained. WFA projects all of the mixture
spectra to a vector that has the information of only
one component and get the concentration profile of
this component. On the other hand, OPR projects all
of the mixture spectra to a subspace that is perpen-
dicular to the subspace generated by all the compo-
nents except one and obtains the concentration pro-
file of that component.

Theoretical expressions are derived to prove that
the results based on WFA are the same as those based
on OPR, if errors are ignored. That is to say, in reso-
lution of two-way data from hyphenated evolution-
ary processes, such as chromatography, flow injec-
tion, reaction kinetics, etc. WFA and OPR are equiv-
alent to each other.

2. Data from hyphenated evolutionary processes

The m=n matrix X discussed here contains data
in the time direction and the wavelength direction.
The m rows correspond to spectra taken at regular
time intervals and n columns represent concentra-
tions profiles measured at successive wavelengths.

Ž .For a mixture of d components compounds , the
matrix X can be expressed as the sum of d bilinear
matrices, one for each component:

d
T TXs c s sCS 1Ž .Ý i i

is1

� Ž .T 4Where c s c , c , . . . , c , is1, 2, . . . , d ,i i1 i2 im
� Ž .T 4s s s , s , . . . , s , is1, 2, . . . , d are the un-i i1 i2 i n

known concentration and spectral vectors, respec-
tively, of the d components.

w xBy principal component analysis 4 , this matrix is
separated into a product of an abstract spectral ma-
trix P and an abstract concentration matrix T.

d
T TXs t p sTP 2Ž .Ý i i

is1

The columns of matrix P are mutually orthonor-
mal. The columns of matrices P and S span the same

Ž .linear space. The vectors p is1, 2, . . . , d form-i

ing the columns of matrix P are linear combinations

Ž .of the true spectral vectors the columns of matrix S .
The true spectral vectors can be expressed, con-
versely, as a linear combinations of the abstract spec-
tra,

d
Ts s a p 3Ž .Ýi i j j

js1

where a is the linear coefficients.i j

( )3. Window factor analysis WFA

Let X k be a submatrix of X that is constructed by
Ždeleting the elution ‘window’ the region of exis-

. Ž .tence of component k Fig. 1 . Principal component
analysis of submatrix X k yields a matrix P k contain-

k Žing dy1 orthonormal abstract spectral vectors p ii
. ks1, 2, . . . , dy1 and a matrix T containing dy1

k Žabstract concentration profile vectors t i s 1, 2,i
.. . . , dy1 .

dy1
T Tk k k k kX s t p sT P 4Ž . Ž .Ž .Ý i i

is1

Ž .Because s is1, 2, . . . , d, i/k , the columnsi

of matrix S, belong to the linear space spanned by the
k Ž .columns of matrix P , s satisfies Eq. 5 .i

dy1
ks s g p 5Ž .Ýi i j j

js1

In fact, the space spanned by the columns of the
k Ž .matrix P is dy1 -dimensional subspace of the full

k Žd-dimensional factor space. The vectors p js1, 2,j
.. . . , dy1 form a basis of this subspace. We can

expand this subspace to d-dimensional space by
finding a vector p k which is orthonormal to these dd

y1 basis vectors. And this d-dimensional space is

Ž .Fig. 1. Window of component k in retention time X direction.
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congruent with the space spanned by the columns of
the matrix S. Hence,

d
kp s k p is1,2, . . . ,d 6Ž . Ž .Ýi i j j

js1

Because of orthonormality, k is easily calculated.i j

k spTp k js1,2, . . . ,d 7Ž . Ž .i j i j

In order to determine p k, consider the sum of p ind i
Ž .Eq. 6 ,

d d d
kp s k p 8Ž .Ý Ý Ýi i j jž /

is1 is1 js1

Ž .Rearranging Eq. 8 gives
d d d dy1

k kk p s p y k p 9Ž .Ý Ý Ý Ýi d j i i j jž / ž /
js1 iy1 is1 js1

Ž . kEq. 9 can give normalized p .d
Ž .Eq. 5 can now be expanded to include the d-th

component.
d

ks s g p 10Ž .Ýi i j j
js1

Ž . Ž .Inserting Eq. 10 into Eq. 1 gives
d d d d

T Tk kXs c g p s g c pŽ . Ž .Ý Ý Ý Ý1 i j j i j i jž /
is1 js1 is1 js1

11Ž .
Ž . kMultiplying Eq. 11 by p givesd

d
kX p s g c 12Ž .Ýd id i

is1

ŽIf i/k, then s is linear combination of p js1,i j
. Ž .2, . . . , dy1 and it is easy to know from Eq. 10

Ž .that g s0 for all i except isk. Then Eq. 11 be-i k

comes

X p k sg c 13Ž .d k k k

Let
k 5 k 5c )sX p r X p 14Ž .k d d

c) is the normalized concentration profile vector ofk

component k.

4. Orthogonal projection resolution

In the same way as for WFA, let X k be a subma-
trix of X that is constructed by deleting the elution

‘window’ of component k. Principal component
analysis of submatrix X k yields a matrix P k contain-

k Žing dy1 orthonormal abstract spectral vectors p ii
. ks1, 2, . . . , dy1 and a matrix T containing dy1

k Žabstract concentration profile vectors t i s 1, 2,i
. k Ž .. . . , dy1 . Let be p the vector produced by Eq. 9 .d

Including p k into dy1 orthonormal abstract spec-d
k Ž .tral vectors p is1, 2, . . . , dy1 described above,i

� k 4then the space spanned by p , js1, 2, . . . , d isj

the same space as that spanned by the spectral vec-
tors of d components. Since the space spanned by the
spectral vectors of d components is a subspace of

Ž . � kn-dimensional space wavelength space , thus p ,j
4js1, 2, . . . , d is the basis of d-dimensional sub-

space of n-dimension space.
� k 4We can expand p , js1, 2, . . . , d into the ba-j

sis of n-dimensional space by finding n–d vectors
p k , p k , . . . , p k, which are orthonormal to thesedq1 dq2 n

d vectors and themselves are mutually orthogonal.
Let

P n s p k p k PPP p k p k p k PPP p kŽ .1 2 dy1 d dq1 n
15Ž .. .k k ^s P .p .Pž /d. .

k Ž k k k . ^ Ž k kWhere P s p , p , . . . , p , P s p , p ,1 2 dy1 dq1 dq2
k . ^ Ž. . . , p . The columns of the matrix p span the n–n

.d -dimensional subspace that is perpendicular to the
subspace spanned by the spectral vectors of d com-

Ž k .ponents or by the vectors p , js1, 2, . . . , d . Ob-j

viously, P n is an n=n orthonormal matrix. That is,
Ž n.T n nŽ n.TIs P P sP P . So

TT . . . .n n k k ^ k k ^I s P P s P .p .P P .p .PŽ . ž / ž /d d. . . . 16Ž .
T Tk k k k ^ ^s P P qp p qP PŽ . Ž .Ž .d d

The projection matrix relating P k is
Tk kM sIyP P 17Ž . Ž .k

Ž . Ž .Inserting Eq. 16 into Eq. 17 gives
T Tk k ^ ^M sp p qP P 18Ž . Ž .Ž .k d d

Let xT be the j-th row of matrix X. Projecting xT toj j

the subspace which is perpendicular to the subspace
� k 4spanned by the vectors p , j s 1, 2, . . . , d y 1j

Ž T .multiplying x by M givesj k

d
T TT T k k ^ ^x M s c s p p qP P 19Ž . Ž .Ž .Ý ž /j k ji i d dž /

is1
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� 4Since s , is1, 2, . . . , d are the vectors in the sub-i
� k 4space spanned by p , js1, 2, . . . , d , the vectorsj

� 4 � ks , is1, 2, . . . , d are perpendicular to p , jsdi j
4 Ž .q1, dq2, . . . , n . Thus, Eq. 19 can be written as

d
TT T k kx M s c s p pŽ .Ýj k ji i d dž /

is1 20Ž .
TT k ks x p pŽ .j d d

The norm of xT M isj k

1r2T TT T k k k k5 5x M s x p p p p xŽ . Ž .ž /j k j d d d d j

1r2T 21T k k Ž .s x p p xŽ .ž /j d d j

T ks x pj d

Ž .Rearranging Eq. 20 gives
d

T TT T k k T k kx M s c s p p qc s p pŽ . Ž .Ýj k ji i d d jk k d dž /
is1, i/k

22Ž .
� 4Because vectors s , is1, 2, . . . , dy1 are in thei

� k 4subspace spanned by p , js1, 2, . . . , dy1 , theyj
k Ž .are perpendicular to vector p . Therefore, Eq. 22d

becomes
TT T k kx M sc s p p 23Ž .Ž .j k jk k d d

The norm of xT M can also be written asj k

1r2T TT T k k k k5 5x M s c s p p p p s cŽ . Ž .ž /j k jk k d d d d k jk

T ks c s pjk k d

24Ž .
The procedure can be repeated for all the mixture

� T 4spectra vectors x , js1,2, . . . , m . In this way, wej

obtain a concentration profile which is proportional to
the profile of pure component k. This can be done

Ž . Ž .simply by combining Eq. 23 with Eq. 24 in the
vector form:

TT T T5 5 5 5 5 5h s x M , x M , . . . , x MŽ .1 k 2 k m k

TT k T k T ks x p , x p , . . . , x pŽ .1 d 2 d m d

T k T k T k 25Ž .s c s p ,c s p , . . . ,c s pŽ .1k k d 2 k k d m k k d

T T ks c ,c , . . . ,c s pŽ .1k 2 k m k k d

T ks c s pŽ .k k d

Normalizing h gives

5 5 k 5 k 5 5 5c )shr h sX p r X p sc r c 26Ž .k d d k k

c) is the normalized concentration profile vector ofk
Ž . Ž .component k. Eq. 26 is the same as Eq. 14 .

5. Conclusion

Although WFA and OPR get the resolution by
different ways, from the equations derived in Section
2, if the elution window of a component is same, the
normalized concentration profile vectors of this com-
ponent gained by the two procedures are the same
Ž Ž . Ž ..Eq. 22 is the same as Eq. 14 . Therefore window
factor analysis and orthogonal projection resolution
are equivalent methods for resolution of two-way data
from hyphenated evolutionary processes.
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