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Direct sampling tandem mass spectrometry (MS/MS) was used for the quantitation of mixtures of the isomers 2-,
3- and 4-ethyl pyridine. The similarity between the analytes and the second-order nature of MS/MS data require
the use of multivariate calibration techniques capable of handling multiway data. Multilinear PLS (N-PLS) was
applied here, as well as the alternative technique of unfolding the data and using standard two-way PLS. Particular
attention was paid to the optimal type of spectral preprocessing. Due to the presence of heteroscedastic noise the
logarithmic transform of the spectra prior to calibration gives the best results. Predictions errors of the order of
10–15% were obtained, which compare well with other results found in the literature.

1. Introduction

Mass spectrometry is a common tool for the analysis of volatile
and semi-volatile organic compounds.1 One common applica-
tion, which has seen increasing use in recent years, is the
analysis of environmental or biological samples such as water,
soil and air contaminated with organic compounds. In this area,
direct sampling techniques such as membrane introduction
mass pectrometry (MIMS) and hyphenated MIMS tech-
niques2–14 have been extensively applied. The advantage of
these techniques is that they allow on-line monitoring of organic
compounds with high sensitivity, yet without the need for
sample preparation. This is in contrast to gas chromatography/
mass spectrometry (GC/MS) and liquid chromatography/mass
spectrometry (LC/MS), for which sample preprocessing is
usually necessary, followed by chromatographic separation,
thus increasing analysis time and effort.

Another advance in the field of mass spectrometry is the
increased use of tandem mass spectrometry, also known simply
as MS/MS. In this technique, a primary ion produced from the
analyte is subsequently mass selected and subjected to collision-
induced dissociation (CID), which produces a single ion or a
series of product ions. It is known that MS/MS can provide
significantly more information than standard mass spectrometry
in cases where the analytes exhibit a similar primary fragmenta-
tion.15,16 This is because product ion mass spectra can be
significantly different even for similar analytes, thus providing
enhanced structural information with increasing selectivity for
the analytes of interest.

The use of mass spectrometry as a quantitative tool has also
seen recent advances. There is a long history of using mass
spectrometry for quantitation based upon finding a selective
peak for an analyte of interest (selected-ion monitoring, SIM)
and generating a univariate calibration model. However, for
analysis of complex mixtures, e.g. those containing many
analytes or very similar analytes such as isomers, the univariate
SIM approach is very limited as finding selective peaks for each
analyte of interest is not usually possible. In this case, it is
necessary to apply multivariate calibration techniques to the full
mass spectrum (total-ion monitoring, TIM). In multivariate
calibration, a set of mixture samples of known composition is

used to build a regression model, which can subsequently be
used to quantify new samples of unknown composition. Whilst
a number of multivariate calibration methods exist, the most
commonly applied in recent chemical applications is that of
partial least squares (PLS).17–19 Some recent works describe the
use of PLS and parallel factor analysis (PARAFAC) for direct
sampling mass spectrometry analysis of mixtures containing
analytes with similar mass spectra.20,21 These works clearly
demonstrate that multivariate calibration of full mass spectra
gives superior results in comparison to the univariate ap-
proach.

In this paper, the use of direct sampling tandem mass
spectrometry for the quantitative analysis of mixtures of volatile
organic isomers is described. Results for multivariate calibra-
tion of an experimentally designed set of mixtures of the organic
isomers 2-, 3- and 4-ethyl pyridine are presented and dis-
cussed.

Multivariate calibration of MS/MS spectra presents a differ-
ent type of problem to that commonly found with other types of
chemical data, such as standard mass spectrometry or near-
infrared (NIR) spectroscopy. Unlike these one-dimensional
techniques, MS/MS produces a two-dimensional spectrum, X (J
3 K), where each of the K precursor ions is further fragmented
to give a spectrum of J masses describing the product ions. This
means that a series of samples will produce a three-way array of
data, X̄ (I 3 J 3 K), where I is the number of mixture samples.
If the concentrations of M different analytes within the mixtures
are known, this information can be collected in a corresponding
two-way concentration matrix Y (I 3 M). This situation is
shown in Fig. 1. With the increased occurrence of chemical
instrumentation producing multiway data, new methods for
multivariate calibration of this type of data have been
developed. In this article, we discuss the application of some of
these methods. In particular, we compare the use of N-PLS with
the approach of unfolding the data and applying standard PLS.
Some other second-order calibration methods are also dis-
cussed, although they were not found to be useful here for
reasons discussed later.

The important issue of how to preprocess MS/MS data is also
discussed. Some researchers have advocated the use of non-
linear transformations such as logarithmic scaling prior to
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calibration in order to combat the problem of heteroscedastic
noise (i.e. noise of a non-uniform level).22–24 A separate
experiment to investigate the noise distribution in the instru-
ment is described here and different types of preprocessing are
discussed.

2. Experimental

The experiments were performed on an Extrel (Pittsburgh, PA)
pentaquadrupole mass spectrometer that consists of three mass
analyzing (Q1, Q3, Q5) and two reaction or dissociation
quadrupoles (q2, q4).25 The sequential MS/MS spectra were
obtained by using the second mass analyzing quadrupole (Q3)
to mass-select the precursor ions generated in the ion source by
electron ionization (EI) at 70 eV. The product ions were
generated in the second dissociation quadrupole (q4) by
collision-induced dissociation (CID) with argon at 15 eV. The
resulting ions were scanned in the third mass analyzing (Q5)
using a mass range of m/z 10–120. The pressure inside the
instrument was 9 3 1025 Torr.

Each synthetic mixture sample was prepared in an ampoule
that was then coupled to the instrument. Direct atmospheric
sampling by the vacuum of the mass spectrometer injected the
vapor sample into the mass spectrometer for analysis. The final
spectrum for each sample is the mean of five successively
recorded spectra, each of which is the result of multiple scans
(integration time 33 ms). This procedure was used to reduce the
amount of noise present in the spectra. The instrument supplies
the data in binary form and it was necessary to transform it into
ASCII format. The data analysis was performed on a PC using
routines written in MATLAB (Version 5.3).26 The PLS
analyses were carried out using the N-way Toolbox for
MATLAB.27

A set of 24 experimentally-designed samples of the organic
isomers 2-, 3- and 4-ethyl pyridine were measured, each sample
having a total volume of 100 mL. The experimental design in
terms of molar fractions is given in Table 1. The volume and
density were used to find the relative mass for each analyte in
the mixture. This mass was used to calculate the molar
fraction.

Each MS/MS spectrum consists of 11 precursor ions (m/z 39,
50, 51, 52, 65, 77, 78, 79, 92, 106 and 107) that were selected
in Q3 after ionization by EI. These 11 precursor ions are
subsquently dissociated to give the product ion mass spectra,
scanned in Q5, with a range of m/z 10 to 120 at m/z 0.1
resolution. Thus, each spectrum has dimensions 1101 3 11. A
typical MS/MS plot of one of the samples analyzed is given in
Fig. 2. The 24 mixture samples are collected to give a three-way
array, X̄ (24 3 1101 3 11).

In addition to the mixture samples, an extra set of spectra was
measured to investigate the reproducibility and noise distribu-
tion of the instrument. A series of ten replicates of per-
fluorotributylamine (FC43) was measured. This calibration

compound was chosen because it yields low, medium and high
intensity peaks.

3. Data preprocessing

Mass spectrometry is often used either solely for qualitative
work or for simple quantitation using selective peaks. Data
preprocessing is often minimal, for example a simple normal-
ization of the mass spectrum by setting the height of the
maximum peak equal to unity. However, when analyzing
mixtures with a large number of components, or with very
similar components such as isomers, more careful consideration
of how to optimally preprocess the data prior to calibration may
be required.

Mass spectrometry, and multi-quadrupole mass spectrometry
in particular, is known to suffer from relatively poor reproduci-
bility.28,29 In addition unstable internal pressure of the equip-
ment and contaminant signals can result in significant levels of
measurement noise. This noise can be separated into two types:
firstly, the overall intensity level of the measured spectrum can
vary, as expressed by

X = (1 + e)X̃ (1)

Fig. 1 A three-way array of MS/MS data, X̄ (I 3 J 3 K), and a
corresponding two-way array of analyte concentrations, Y (I 3 M).

Table 1 Molar fractions of the mixture samples

Training samples
2-Ethyl
pyridine

3-Ethyl
pyridine

4-Ethyl
pyridine

1 1.000 0.000 0.000
2 0.599 0.401 0.000
3 0.399 0.601 0.000
4 0.000 1.000 0.000
5 0.599 0.201 0.201
6 0.199 0.600 0.200
7 0.399 0.300 0.301
8 0.599 0.000 0.401
9 0.299 0.400 0.301

10 0.299 0.300 0.401
11 0.000 0.600 0.400
12 0.362 0.000 0.638
13 0.199 0.200 0.601
14 0.000 0.400 0.600
15 0.000 0.000 1.000
Test samples

1 0.799 0.100 0.100
2 0.100 0.800 0.100
3 0.499 0.301 0.201
4 0.299 0.501 0.200
5 0.499 0.200 0.301
6 0.199 0.500 0.301
7 0.299 0.200 0.501
8 0.199 0.300 0.501
9 0.100 0.100 0.801

Fig. 2 Plot of the MS/MS product ion mass spectrum for sample 9.
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where X is the measured and X̃ is the true signal for one sample,
both having dimensions J 3 K. The scalar noise term, e,
influences the overall intensity level and varies from measure-
ment to measurement. This type of noise can be treated by
applying some form of normalization, e.g. using an internal
standard or by normalizing the spectrum to constant sum-of-
squares.22,23

A second type of noise is variation in individual peaks,
expressed by

xjk = x̃jk + ejk (2)

where xjk and x̃jk are the measured and true signals for product
ion j from precursor ion k. The noise term here, ejk, may be
different at each point of the spectrum. In the case where the
level of noise is dependent upon the peak intensity, e.g. ejk =
±ax̃ij, this is known as heteroscedastic noise. As most
calibration models give equal weight to the residuals at each
variable, it is preferable to transform the noise to be approx-
imately uniform across the spectral range.

As has been noted by Kvalheim et al., Brakstad and
others,22–24 it is difficult to separate these two types of noise,
leading to a complex situation. For example, peaks with a high
intensity have most influence during spectral normalization and
yet, due to heteroscedasticity, these may be the most unreliable.
The result is that during the normalization step, noise in the high
intensity peaks is transferred to the smaller peaks leading to
distortions in the data set.22 For this reason, it may be preferable
to use a transform, such as taking logarithms, to remove
heteroscedastic noise prior to spectral normalization. In the case
of heteroscedastic noise where the noise is proportional to the
signal intensity, eqn. (2) can be written as

xjk = x̃jk ± ax̃ij = (1 ± a)x̃jk (3)

Taking logarithms of eqn. (3) gives

log(xjk) = log((1 ± a)x̃jk) = log(1 ± a) + log(x̃jk) (4)

It can now be seen that so long as a < < 1, log(1 ± a) ≈ 0 and
so proportional noise is removed by the logarithmic transform.
However, it should be noted that the use of non-linear
transformations such as logarithms removes linearity from the
data, an undesired side-effect. The general conclusion seems to
be that the exact type of preprocessing to use depends upon the
relative types and levels of noise within the data. This choice
will clearly differ from instrument to instrument and from data
set to data set.

The MS/MS spectra of ten replicates of FC43 were measured.
Fig. 3 shows a plot of the standard deviation of the signal versus
the mean signal intensity for all spectral points. It is clearly seen
that heteroscedastic noise is present: signal noise increases with
signal intensity. Furthermore, the signal standard deviation is

approximately proportional to the signal intensity, a situation
for which the logarithm transformation may be suitable.22,23

To investigate the relative merits of different types of
preprocessing, five different options were used in the calibra-
tions discussed later: (1) No preprocessing. (2) Normalization
by maximum peak (N):

(5)

(3) Log transformation (L):

x*
jk = log(xjk + 1) (6)

(4) Normalization by maximum peak followed by log trans-
formation (N,L):

(7)

(5) Log transformation followed by normalization by the
maximum peak (L,N):

(8)

The results of the comparison are discussed in Section 5.

4. Multivariate calibration

Partial least squares (PLS) is a multivariate calibration tech-
nique well established within the chemical community.17–19

Like all regression methods, it aims to find a relationship
between a set of predictor data, X, and a set of responses, Y. A
major difference, however, between PLS and simple multiple
linear regression (MLR) (or ordinary least squares, OLS) is that
PLS is able to give stable predictions even when X contains
highly correlated variables (a common situation for spectro-
metric data). Unlike univariate techniques, PLS will work even
if unknown interferents are present in new samples, provided
that these interferents are also present in the data used to train
the model.

In recent years, the number of regression problems within
chemistry for which the predictor data has more than two
dimensions has grown, due to the increase in hyphenated
instrumentation and multiway spectrometry, such as fluores-
cence and MS/MS.30 The original PLS algorithm was designed
for two-way data (e.g. sample 3 wavelength) and a number of
researchers have found ways of adapting this algorithm to
handle the multiway situation.31 For PLS, there are two main
approaches:

4.1 Unfold-PLS

In the unfold-PLS (U-PLS)32 the multiway data, X̄ is first
rearranged (‘matricized’ or ‘unfolded’) to produce a two-way
array. Thus, the three-way array, X̄ (I 3 J 3 K), is unfolded to
give a two-way array, X (I 3 JK). It is then possible to use the
standard two-way PLS algorithm on the two-way data. For a
detailed description of the PLS algorithm, the reader is referred
to the literature,17,18 the main idea is to find bilinear components
in X which have maximum covariance with a univariate
response, y. This is expressed by

(9)

where ta (I3 1) are the PLS scores and wa (JK3 1) are the PLS
weights for the ath model component.

Fig. 3 Standard deviation versus mean signal intensity for the ten
replicates of FC43.
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The PLS model is used in two stages: first, a set of training
samples is used to build the model. From this model, it is
possible to calculate a set of regression coefficients, which can
then be used to make predictions for new samples:

ŷnew = XnewbPLS (10)

In the case of multiple responses, e.g. concentrations for M
different analytes, the most common approach is to build a
separate PLS model for each response.

4.2 Multilinear PLS

Multilinear PLS (N-PLS) is an extension of the two-way PLS
algorithm for cases where the predictor data, X̄, is an array of
order higher than two.33 Like PLS, the aim is to find
components in X̄ which have maximum covariance with y, but
here multilinear components are used. In the case of a three-way
X̄, trilinear components are used:

(11)

where it can be seen that now two weights vectors are used for
each model component: wJ

a (J 3 1) and wK
a (K 3 1). Thus, in

contrast to two-way PLS, each dimension of the three-way array
is described by its own scores or weights vector. This situation
is shown in Fig. 4.

N-PLS imposes a trilinear structure on the set of MS/MS data
used to train the model. However, it is in no way clear to what
extent a trilinear structure is actually present in the data.
Certainly, the matrix produced from one sample is not bilinear
as, for example, it is for other second-order instrumentation
such as fluorescence spectroscopy.34 While it is true that there
are some related patterns in the fragmentations of the different
precursor ions, there is no direct relationship between the
various product ion spectra. However, for N-PLS, this lack of
clear trilinear structure is not considered critical, as the main
aim is to find a subspace of X which can be used for regression.
It has been shown in the literature that multilinear regression
methods can work well even on data with no strict multilinear
structure.31

One possible advantage of N-PLS when applied to MS/MS
data is that it is possible to plot separate model weights for the
precursor ions (dimension K) and the product ions (dimension
J). In U-PLS, the two dimensions are mixed up in the unfolding
step, which could make model interpretation more complicated.
Furthermore, the use of a multilinear structure for the PLS
weights means than N-PLS uses fewer model parameters than
U-PLS to describe the data. This may mean that the N-PLS
model is more robust to the influence of noise in the data. In this
paper, U-PLS and N-PLS are both used in order to investigate
whether there are significant differences between the ap-
proaches.

4.3 Variable selection

In multivariate calibration, it is sometimes found that prediction
accuracy can be improved by using only selected regions of the

spectrum.35–37 In particular, it is sometimes found that remov-
ing regions containing significant levels of background noise or
interferent signal can improve the calibration. MS/MS data
exhibits an unusual feature in that a large part of the data array
may contain no information. This is because it is impossible for
a precursor ion to produce product fragments with a higher mass
than itself (see Fig. 2). One option, therefore, would be to
immediately remove this part of the array from any analysis.
However, in practice, it was found that removing this region, or
even using selected peaks, did not significantly influence the
results. One reason for this could be the relative absence of any
background interferents or matrix effects in the synthetic
mixtures. Therefore, the full spectral region is used as this
enables easier plotting and interpretation of the PLS weights.

4.4 Other second-order calibration methods

In addition to N-PLS, there exists a family of second-order
calibration techniques which relies more strictly on the trilinear
structure within the data. These techniques, such as the
generalized rank annihilation method (GRAM),38 residual
bilinearization (RBL)39 and restricted Tucker models,40 have
attracted attention because they offer the possibility of being
able to handle unknown interferents in new samples (the so-
called ‘second-order advantage’41), something PLS-type meth-
ods cannot do.

Although these techniques were designed for bilinear data,
some work has been reported in extending the methodology to
non-bilinear data. In particular, Wang et al.41 reported a limited
example of the use of NBRA for the quantitation of MS/MS
data. However, attempts to apply both the non-bilinear rank
annihilation (NBRA) and residual bilinearization (RBL) meth-
ods to the MS/MS data described here were not successful,
yielding very high prediction errors. The probable reasons for
this were twofold: firstly, it is known that these techniques are
quite sensitive to experimental noise;42 secondly, the complex-
ity of the MS/MS spectra means that a low-rank bilinear
approximation of the data was not possible in this case.
However, the use of these techniques remains of interest and
will continue to be investigated.

5. Results and discussion

The data were split into two sets: a training set consisting of 15
samples and a test set consisting of 9 samples, as shown in Table
1. Four types of preprocessing were used and two types of
calibration model, U-PLS and N-PLS. A separate calibration
model was built for each analyte and in each case the number of
model components was selected using leave-one-out cross-
validation with a preference for a low number of model
components. The calibration results for the test set are given in
terms of the percentage standard error of prediction, %SEP:

(12)

where yn and ŷn are respectively the true and predicted
concentrations for test sample n and ȳ is the mean test sample
concentration. The results for U-PLS are given in Table 2 and
those for N-PLS in Table 3.

It can be seen that quantification of 2-ethyl pyridine is easier
than that for 3- and 4-ethyl pyridine. It was also found that only
three PLS model components were needed for 2-ethyl pyridine,
whereas five were needed for the other two analytes. Although
the spectrum of 2-ethyl pyridine has no selective peaks, it is the
most dissimilar of the three isomers due to the absence of a
precursor ion of m/z 92.Fig. 4 Decompositions of X̄ for (a) U-PLS and (b) N-PLS.
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The electron density in pyridine is relatively high at the
3-position, thus making the m/z 92 the most favorable
carbonium ion. The fragments formed by ß-fission undergo
further elimination of hydrogen cyanide resulting in m/z 65.43

The 3-ethyl pyridine has a very high intensity of these ions and
the 4-ethyl pyridine shows a medium intensity of the m/z 92 and
65. However, the ion m/z 92 does not exist for the 2-ethyl
pyridine, because the small quantity that is present is frag-
mented to m/z 65, that has very low intensity for this isomer.

Furthermore, 2-ethyl pyridine has a higher vapor pressure
(4.88 mmHg) than the 3- and 4-ethyl pyridines (2.55 mmHg and
2.22 mmHg respectively), which may mean that this isomer
suffers less from variation due to the transport of the mixture
sample from the ampoule into the instrument.

It is also seen that the calibration for 2-ethyl pyridine is not so
dependent upon the type of preprocessing used. For 3- and
4-ethyl pyridine, the use of the logarithm transform to alleviate
heteroscedastic noise is clearly advantageous. Furthermore, it is
clearly better to apply logarithms before normalization (L,N),
for reasons discussed earlier. It seems that for this data, the non-
linearizing effect of the logarithmic transformation can be
compensated for by using extra PLS components.

Of the two calibration methods, N-PLS seems to work
slightly better than U-PLS when L,N scaling is used, although
this result is not necessarily significant given the limited
number of test samples. N-PLS does seem to be more sensitive
to the use of incorrect preprocessing, perhaps because the more
rigid model structure is less flexible to non-linearities in the
data.

For the calibration using L,N preprocessing and N-PLS, the
PLS weights describing the precursor ion dimension for the
three isomers are shown in Fig. 5. It is seen that the higher m/z
precursor ions tend to have a higher weight; this being because
the heavier ions give a larger number of different product ions.
To find the most important fragments, it is necessary to look at
the weights for the product ions. These weights for the three N-
PLS components for 2-ethyl pyridine are shown in Fig. 6. It is
seen that product ions across the whole m/z range are
significant, but the m/z 92 ion is the unique one that presents a
high weight in the three components. It is important to comment
also that the m/z 106 and 107 that are very important, as
precursor ions in the product ions do not show high weight. The
product ion weights for 3- and 4-ethyl pyridine (not shown here)

exhibited a similar pattern to those for 2-ethyl pyridine and were
very similar to each other. The pure spectra for these
compounds are very similar, exhibiting exactly the same set of
fragment ions, but at different intensities. The calibration of
mixtures of isomers, which have very similar spectra, as there
are no selective peaks present, is based on the differences in
relative intensities of a series of product ion peaks.

When using the log transformation and N-PLS, the percent-
age standard errors of prediction are between 10 and 15%. This
compares well with other reports of quantitation using direct
sampling mass spectrometry.20,21 In general, it is found that

Table 2 Calibration results for the five different preprocessing methods
using U-PLS

%SEP

Preprocessing
2-Ethyl
pyridine

3-Ethyl
pyridine

4-Ethyl
pyridine

1. No preprocessing 11.7 47.7 31.7
2. N 14.7 19.9 32.7
3. L 11.4 15.3 20.8
4. N,L 13.5 15.6 26.4
5. L,N 11.2 15.3 20.3

Table 3 Calibration results for the five different preprocessing methods
using N-PLS

%SEP

Preprocessing
2-Ethyl
pyridine

3-Ethyl
pyridine

4-Ethyl
pyridine

1. No preprocessing 12.6 68.0 55.8
2. N 19.9 34.8 52.8
3. L 10.9 13.4 14.3
4. N,L 18.1 26.5 42.6
5. L,N 11.1 12.3 15.0

Fig. 5 N-PLS weights for the precursor ion dimension using L,N
preprocessing: (a) 2-ethyl pyridine, (b) 3-ethyl pyridine and (c) 4-ethyl
pyridine.
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predictions for compounds at a low concentration are slightly
worse than for those at a high concentration. This could be due
to the use of the log transformation, which has a higher
influence on linearity for low intensities. An alternative to using
data transforms to counter heteroscedastic noise is the use of
weighted regression methods.44–46 However, these require
detailed knowledge of the noise distribution across the spec-
trum, which may not always be available.

6. Conclusions

In this paper, it has been shown that the enhanced selectivity
provided by direct sampling MS/MS coupled with multivariate

calibration can work well for the quantitation of organic
isomers. The fragment at m/z 92 (a product ion from precursor
ions m/z 106 and 107) is found to be important, because this ion
is present for 3- and 4-ethyl pyridine, but is not hardly produced
by 2-ethyl pyridine.

Some multivariate calibration methods were applied in the
MS/MS data, but they do not show better results than N-PLS.
Prediction errors were of the order of 10–15%, a result which
would not be possible using univariate calibration techniques
for analytes with such similar spectra. It has been shown that
correct preprocessing of MS/MS data is critical and that the use
of the logarithmic transform prior to normalization seems to
work well.

Despite the lack of a clear trilinear structure in this MS/MS
data, multilinear PLS was found to give good results and
provides a straightforward method of multivariate calibration
for MS/MS data in which the most important product (and
precursor) ions can be determined by plotting the model
weights.
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