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Abstract

Data from a batch chemical process have been analysed in order to diagnose the causes of variability of a final quality parameter. The

trajectories of 47 process variables from 37 batches have been arranged in a matrix by using alignment methods. Two different approaches

are compared to diagnose the key process variables: PLS with variable selection and block-wise PCR. The application of Unfold Partial Least

Squares Regression (U-PLS) leads to one significant component. By means of weight plots, the variables most correlated with the final

quality are identified. Nevertheless, with observed data, it is not possible to know if correlation is due to causality (and hence related to a

critical point) or is due to other causes. Pruning PLS models by using variable selection methods and technical information of the process has

allowed the process variables most correlated with the final quality to be revealed. The application of Principal Component Regression to the

trajectories of the process variables (block-wise PCR) has given straightforward results without requiring a deep knowledge of the process.

The results obtained have been used to propose several hypotheses about the likely key process variables that require a better control, as a

previous step to conducting further studies for process diagnosis and optimisation, like experimental designs.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Chemical processes can operate in continuous or batch

stages. Batch processes are more difficult to control, be-

cause, often, the duration of the different stages is not

constant from batch to batch, and it can have an effect on

the final quality. The problem is that only variables like

pressures or temperatures are known from the process. The

quality is usually determined in the laboratory once the

batch finishes after several hours. Very often, the final

quality of the product is not right, and the causes remain

unknown. From a statistical point of view, causes may be

due to out-of-control situations (undesirable events or faults

to be avoided), or due to an excessive variability in certain

critical points that operate under control but would require a

better adjustment to reduce the variability.
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Two different approaches can be considered in order to

diagnose the factors that affect the final quality of a batch

process. One approach is the design of experiments (DOE),

based on ‘‘forcing variability’’, that is, forcing the process to

operate in certain predefined conditions according to a

properly designed set of experiments. The advantage of this

approach is that it allows the identification of the factors that

significantly affect the final quality, and also allows the

establishment of the optimal operative conditions. The main

problem is the need for conducting the experiments, which

is expensive and in the course of the experiments there is a

risk of obtaining a low-quality product or threaten the

security of the process. Besides, in very complex processes,

the number of potential factors can be really very high,

which would make unapproachable any experimental pro-

posal. If finally some factors are chosen to conduct a DOE,

the probability to leave out of the experiments unknown

factors that significantly affect the final quality can be very

high.

A different approach, yet complementary, is the analysis

of the ‘‘observed variability’’ of the process. With the



Table 1

Process variables considered in the analysis

Stage N.ac.a N.dis.b N.t.c N.cu.d N.de.e N.tr.f N.al.g Hoursh

1 9 1 2 0 3 13 1635 5.6

2 12 6 1 5 0 12 1655 6.3

3 12 3 1 5 0 15 2709 6.7

4 14 5 1 2 0 12 2986 3.4

Total 47 15 5 12 3 52 8985 22

a Number of process variables acquired.
b Number of process variables discarded.
c Number of variables of time from the alignment.
d Number of cumulated oscillating variables.
e Number of derivative transformed variables.
f Total number of trajectories (a� b+ c+ d+ e).
g Total number of aligned variables.
h Average duration of the stage (hours).
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current development of sensors and controllers for chemical

processes, quite often, huge data bases from process varia-

bles are available for historical batches. These data bases

contain valuable information, and if they are conveniently

analysed off-line, predictive models of the final quality can

be obtained in order to detect faults, critical points or to

implement models for on-line monitoring. The main advan-

tage of this approach versus DOE is that it does not require

any experimentation with the process, yet, the statistical

analysis of process data is more complex than the data

analysis from DOE. Nomikos and MacGregor [1] developed

a methodology to analyse historical data of batch processes

aimed at monitoring, which has also been applied for

diagnosis [2]. This methodology unfolds three-way data

matrices (batches� process variables� time) into a two-

way matrix suitable for the application of Principal Com-

ponent Analysis (PCA) and Partial Least Squares Regres-

sion (PLS). Both are methods based on projection to latent

structures, which provide a way to handle the highly

correlated data registered by electronic sensors from chem-

ical processes. Moreover, they deal effectively with multiple

quality and productivity variables and with missing data,

and they provide a good tool to extract and highlight the

systematic variation of data, reducing the dimension of the

problem to a space of few components.

When analysing observed variability, care has to be taken

in the diagnosis of the variables significantly correlated with

the final quality. On the one hand, the observed correlation

can be at random. But in the case that correlation is not at

random, it does not necessarily imply that the variables cause

the variation of the quality. Correlation can be due to

different reasons, and not always due to a cause–effect

relationship. When data from a process are analysed for

diagnosis, the faults or critical points will be related to

variables with causal correlation regarding the final quality.

But in the analysis of observed data with statistical methods,

it is not possible to know the reasons of the observed

correlation, unless empirical models are supplemented with

external information of the process. For example, if a change

occurs in a process that affects 10 process variables and also

the final quality parameter, all of them will be correlated with

the quality, but it does not mean that they are all responsible

for the variation in quality. Aimed at developing an efficient

methodology for diagnosis able to cope with the drawbacks

described, two approaches are presented: The use of PLS

models with a procedure for variable selection using external

information of the process, and a simple method based on the

application of Principal Component Regression to the dif-

ferent trajectories that has been denominated ‘‘block-wise

PCR’’, which has turned out to be more efficient than the

previous one. Both approaches have been applied to diag-

nose a batch chemical process in order to detect the critical

points that require a better control to reduce the variability of

the final quality and hence to avoid batches out of specifi-

cations. Wold et al. [3] have presented a discussion on the

use of hierarchical models and variable selection.
The proposal of this paper is to merge DOE and analysis

of observed data: The use of multivariate statistical tools to

reduce the number of potential key process variables and

select the likely critical factors, as a previous step to

conducting a further DOE with them in order to finally

achieve the diagnosis of the process. A similar methodology

to deal with data from a chemical batch process is presented

by Yacoub and MacGregor [4].
2. Methodology for data pre-treatment

2.1. Description of the process and variables

The process studied is the elaboration at industrial scale

of the polymer polypropylene oxide (PPOX), used as a raw

material for the fabrication of flexible polyurethane foams.

Data have been supplied by a chemical company located in

Spain. It is a batch process in four consecutive stages, using

propylene oxide and a polyalcohol as reagents. The average

total duration of the process is 22 h, and the average

duration of each stage is presented in Table 1. Every stage

takes place in a different tank or reactor, and in some of

them, several consecutive operations (sub-stages) are carried

out. When the stage finishes, all the content of the batch is

transferred to the next tank. In total, 47 parameters are

registered from the process by electronic sensors, whose

code (in brackets) and description is presented below.

Stage 1 is the preparation of the initiating solution and

takes place in three sub-stages. The first one begins with the

addition of a predetermined amount of polyalcohol to the

empty tank, and the instant (1FP) and cumulated flow

(1FPcu) are registered. The second sub-stage is the addition

of an alkali in watery solution, and also the instant (1FAL)

and cumulated (1FALcu) flow are collected. In the third

sub-stage, a vacuum is carried out to dehydrate the solution.

The tank is heated by means of a heating circuit controlled

by a valve (1VAL). The information collected inside the

tank along the stage is: pressure (1PR), temperature (1Ta),

pH (1pH) and level (1LEV).
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When this stage finishes, the content of the batch is

transferred to a new reactor where stage 2 takes place: the

elaboration of the pre-polymer. A certain amount of exactly

measured propylene oxide is added, and the instant (2FO)

and cumulated (2FOcu) flows are registered. Inside the tank,

different information is acquired: pressure (2PR), stirring

intensity (2STI) and temperature measured at two different

points (2Taa and 2Tab). As the reaction is exothermic, the

temperature is controlled by means of a cooling circuit, from

which 6 variables are collected: the temperature at three

different points (2Tac, 2Tad and 2Tae), the pressure (2PC)

and two valve openings (2VALa, 2VALb).

When the reaction finishes, the content of the batch is

transferred to a new tank where the pre-polymer turns into

the polymer (stage 3). A second addition of propylene oxide

is conducted, registering the instant (3FO) and cumulated

(3FOcu) flows and the valve that controls the addition

(3Oval). Inside the reactor, four process variables are

collected: pressure (3PR), intensity of the stirrer (3STI)

and temperature measured at two different points (3Taa,

3Tab). A cooling circuit controls the temperature, and

several variables are collected from the circuit: temperature

at two different points (3Tac, 3Tad), pressure (3PC) and two

valve openings (3VALa, 3VALb).

When the polymerisation reaction finishes, the content of

the batch is transferred to a new tank to launch stage 4,

which consists of three sub-stages. First, a short vacuum is

conducted to eliminate rests of propylene oxide that have

not reacted in the previous stage. Afterwards, an acid in

watery solution is added, and the instant (4FAC) and

cumulated (4FACcu) flow are registered. The acid is added

from a tank from which 3 variables are collected: temper-

ature (4Taci), pressure (4PRaci) and a valve that regulates a

heating circuit (4VALaci). The third sub-stage is a vacuum

dehydration, that takes place at high temperature, regulated

by a heating circuit controlled by a valve (4VAL). The tank

is stirred, and three parameters are registered from the stirrer

(4STIa, 4STIb, 4STIc). During this stage, temperature (4Ta)

and pH (4pH) are collected inside the tank, and also the

pressure, measured by two sensors of differing accuracy and

measuring range (4PRa, 4PRb). When the dehydration

finishes, the tank is emptied and the pressure in the

emptying pipe (4PC) is collected.

Once the batch is elaborated, a sample is taken and

brought to the laboratory to analyse the quality. One of

the quality parameters measured is the hydroxyl index (that

will be referred as IOH). It is proportional to the ratio of the

number of hydroxyl groups per molecule and the molecular

weight, and basically depends on the type and proportion of

the reagents. This parameter is positively correlated with the

rigidity of the polyurethane foam obtained from the PPOX.

Thus, there is a strong motive to produce the polymer by

reducing the variability of the hydroxyl index around the

nominal value as much as possible. The analytical results

are available after several hours. The problem detected in

the factory is that the variability of this quality parameter is
too high, and as a consequence, a certain percentage of

batches are out of specifications. There is a keen interest to

identify the critical points of the process that require a better

control to reduce the variability of the final quality, and

hence to avoid batches out of specifications. The company

has provided data from 37 batches chosen randomly from

the period between December 3, 2000 and January 18,

2001. For every batch, the 47 process variables mentioned

are available, which are registered on-line from the process

by means of electronic sensors with a sampling frequency of

1 min.

2.2. Variables discarded and transformed

Two of the 47 process variables have been discarded

because they supply nearly the same information as other

variables: 2Tae (its values nearly coincide with 2Tac) and

3Oval (values highly correlated with 3FO). The variables

4PRaci and 4VALaci have also been removed, as they

provide information about the tank of acid, and according

to technical knowledge, this information is not important.

The values of the variables 4PRa and 4PRb have been

combined into a single variable.

In the case of the additions, taking into account that the

instant flow is the derivative of the cumulated flow, both

variables are related and supply a similar information. The

main information is provided by the cumulated flows that

have been used as indicator variables for the alignment,

producing new variables of time for the addition of different

reagents: polyalcohol (1t-p), alkaline solution (1t-al), pro-

pylene oxide in stage 2 (2t-ox) and 3 (3t-ox), and acid

solution (4t-aci). These new variables contain redundant

information regarding the cumulated flows, and for that

reason, some of them have been discarded (1FALcu, 2FOcu,

4FACcu), and also some instant flows (2FO, 3FO, 4FAC).

A way to incorporate external information specific to

the process is with transformed variables generated from

process variables. Ramaker et al. [5] describe several

examples about how to incorporate external information.

The trajectories of the variables from the cooling circuits

oscillate with high amplitude and low period (a few

minutes). Thus, the information will not be at the value

that one of these variables takes at any given moment, but

in the general pattern of the variable along the stage of the

batch. For that reason, cumulated values (integrated over

time) that are more sensitive in detecting changes of trends

have been calculated for these variables. The valve open-

ing variables contain values comprised from 0 (valve

closed) to 100 (totally opened). The cumulated values

have been calculated respect zero, obtaining a new trajec-

tory that increases monotonically, and the new variables

2VALa_cu, 2VALb_cu and 4VAL_cu have been created.

These transformed variables will be more powerful at

detecting those valves that in average have been opened

or closed for longer. Some variables of temperature and

pressure have also shown an oscillating evolution, and the



Table 2

Types of unfolding a three-way matrix, according to Westerhuis et al. [12]

Type Structurea Directionb

A KI� J variables

B JI�K time

C IJ�K time

D I�KJ batches

E I� JK batches

F J� IK variables

a Structure of the unfolded matrix.
b Direction that remains unaltered.
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cumulated values have been calculated with respect to the

mean value, producing a non-monotonic trajectory, and the

following new variables have been created: 2PR_cu,

2Tac_cu, 2PC_cu, 3PR_cu, 3Taa_cu, 3VALa_cu,

3VALb_cu, 3PC_cu and 4PR_cu. The most oscillating

original variables (2VALa, 2VALb, 2PC and 3PC) have

been discarded for the analysis, as their information relies

on the corresponding cumulated variables created.

Another type of transformation used is the derivative of

the trajectory. According to technical information, the de-

gree of dehydration in stage 1 can be related with the slope

of the trajectory of the variables that supply information

inside the tank. For that reason, new variables have been

created: the derivative of pressure, temperature and level in

stage 1 (coded as 1PRd, 1Tad and 1LEVd).

2.3. Alignment

Starting with the variables provided by the company,

discarding and adding new variables as indicated, 52 tra-

jectories are available according to Table 1. In the process,

all stages and sub-stages have a different duration from

batch to batch, what requires the application of alignment

methods to correct, synchronise or align the trajectories of

the variables in order to handle comparable data among

batches. In those cases where a reagent is added, the

indicator variable approach has been used, as proposed by

Nomikos and MacGregor [6]. The application of this

method has been possible because the cumulated flows are

monotonically increasing variables that are accurately mea-

sured and present the same values at the beginning and the

end for all batches (as the total amount added is constant).

Considering the cumulated flow as indicator variable, a new

pseudo-temporal variable used is the ‘‘time needed to fill the

0%, 1%, 2%,. . ., 100% of the total amount of the reagent’’

(variables 1t-p, 1t-al, 2t-ox, 3t-ox, 4t-aci previously cited).

These times are obtained from the trajectory of the cumu-

lated flows using linear interpolation, and at the different

times, the values of the other process variables of the sub-

stage are calculated. Thus, the time needed to fill 0%

corresponds to all batches with the beginning of the sub-

stage, and the time to fill 100% is the end of the sub-stage,

resulting in a synchronisation or alignment of the trajectory

in a scale of pseudo-time.

This method could not be applied to the sub-stages of

dehydration. In these cases, the sub-stage starts with a

lowering of the pressure, and ends when the vacuum

breaks and turns into atmospheric pressure. The duration

is not constant but it is not possible to define an indicator

variable to settle the end of the sub-stage. The criterion

used is the one described by Louwerse et al. [7]: For every

batch, the duration of the vacuum is divided into 100 parts,

obtaining the instants of time that account for 0%, 1%,

2%,. . ., 100% of the duration of the sub-stage, and at those

instants of time, the values of the other process variables

are calculated.
2.4. Unfolding

The application of the alignment methods produces for

every stage a new matrix of three-way data, which consists

of J process variables measured in K instants of corrected

time, in I batches. The application of PLS to matrices

unfolded into a two-way structure is called ‘‘unfold PLS’’

(U-PLS) [8], a term that is currently preferred instead of

‘‘multiway PLS’’ proposed by Wold et al. [9]. In the

unfolding, one of the directions remains unaltered, while

the other is the rearrangement of the two other directions

slice by slice. Six ways of unfolding the matrix are

possible, as indicated in Table 2. Matrices B and C are

equivalent, just reordering the rows; matrices D and E are

also equivalent by reordering the columns. The F matrix is

the transpose of A. More details about multiway methods

and their unfolding for analysis have been described by

Smilde [10].

Wold et al. [11] use type A, which, according to those

authors, is motivated when on-line monitoring of the batch

process is wanted. The unfolding procedure used by Nomi-

kos and MacGregor [1] corresponds to type D. This is more

common for the analysis of historical data (as in the present

case) but is also quite widely applied for on-line monitoring.

Westerhuis et al. [12] and Kourti [13] compare several ways

to unfold the data matrix and discuss their effects for the

monitoring of batch processes.

In this paper, unfolding type E is going to be used,

maintaining the direction of batches and arranging the

trajectory of the first process variable, afterwards the next

trajectory, and so on according to Fig. 1. As the matrices

unfolded according to types D and E are equivalent, the

application to PLS to both matrices produces exactly the

same results. Nevertheless, the interpretation of the results

from the graphs can lead to different conclusions according

to the type of unfolding. The advantage of type E in the

diagnosis of PLS models, as described later on, is that it

allows the comparison of the trajectory of the weights of the

PLS model with the trajectory of the original variables,

making it easier to diagnose the underlying causes of

variability.

The total number of aligned variables is 8985 (see Table

1). It is a very high number of variables, compared with

ent Laboratory Systems 73 (2004) 15–27



Fig. 1. Unfolding scheme corresponding to type E.

M. Zarzo, A. Ferrer / Chemometrics and Intelligent Laboratory Systems 73 (2004) 15–27 19
other industrial examples of batch processes described in the

literature.
3. Batch process diagnosis: results and discussion

In order to help in the diagnosis of the key process

variables that affect the final quality, two different

approaches are going to be compared: PLS with variable

selection methods and block-wise PCR.

3.1. PLS with variable selection methods

A PLS regression has been applied to the unfolded

matrix with the software SIMCA-P 8.0 of Umetrics. Due

to the small number of batches available, the data set has not

been split into a training and prediction set. Thus, all

available batches have been used to build the different

models, using cross-validation to determine significant

components. In all PLS models conducted, data have been

centred and scaled to unit variance. The first component is

significant, and explains 15% of the variation in the X

matrix (RX
2), and 54% the variation of the quality variable

(RY
2), with a cross-validated (Q2) value equal to 30%. Fig. 2

shows the weights of the 8985 variables in the first PLS

component. Many periods with high values of weights in

absolute value can be seen, but no trajectory stands out more

than the rest, which would help the diagnosis.
Fig. 2. Plot of the weights of the 8985 aligne
The analysis of the weights allows the identification of

the variables most correlated with the final quality, but it is

not possible to know if that correlation is causal. To try to

overcome this drawback, PLS models have been simplified

with variable selection criteria by incorporating external

information of the process (technical knowledge). The

methodology applied justifies the type of pre-processing

used for the variables: data centred and scaled to unit

variance. One revision of pre-processing methods for multi-

way data has been presented by Harshman and Lundy [14].

As a row of the unfolded matrix (one observation)

contains all the information of a batch, when data are

centred, the average trajectory for the 37 batches is sub-

tracted from every process variable, eliminating the main

non-linearity due to the dynamic behaviour of the process.

Thus, the multivariate analysis with centred data is a study

of the systematic variation of the trajectories with respect to

the average trajectory. The critical points will be those

variables whose deviation from the average trajectory

causes the variability of the final quality.

The scaling of the variables is an important matter, as it

affects the multivariate models. When process data are

analysed, the simplest approach is to scale all aligned

variables to unit variance. One drawback of this approach

is that possibly the weight of periods of low variability in

the trajectory of a process variable (that might be associated

with noise) can be overestimated in comparison with the rest

of the trajectory with consistent information. To avoid this,
d variables in the first PLS component.
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different criteria of scaling can be used. One advantage of

using several scaling criteria is the possibility to introduce

external information of the process variables. If it is known

a priori that a certain period is critical, it is recommended to

weight that period in order to exert more influence over the

model. In this case, although according to technical knowl-

edge, it is known that the importance of all the variables is

not the same, the scaling to unit variance has been used

because it facilitates the diagnosis of PLS models, according

to the methodology described later, as this type of scaling

satisfies the following property:

Working with data centred and scaled to unit variance

and with a single response variable, the weights of

variables in the first PLS component are proportional to

the linear correlation coefficients between the variables

and the response variable.

Brown [15] demonstrates this property as follows. When

PLS is applied to a data matrix X of I observations by N

aligned variables (being N the product of J process variables

and K instants of corrected time), the observations are

projected over a certain direction, obtaining a score vector t

that contains the projections of those observations in the

direction defined by the unit vector of weights w. When a

single response variable is used (then the PLS is usually

referred as PLS-1), that direction is the one that maximises the

covariance between the score vector and the response vari-

able (y vector). From the definition of covariance and taking

into account that values are centred, this expression follows:

covðt; yÞ ¼

XI

i¼1

ðti � t̄Þ � ðyi � ȳÞ

I � 1
¼

XI

i¼1

ðti � yiÞ

I � 1
¼ tT � y

I � 1

ð1Þ

When the X matrix is projected over the direction defined by

w, the t vector is obtained.

X w ¼ t ! wT XT ¼ tT ð2Þ

As PLSmaximises the covariance between vectors t and y, the

following expressions are obtained:

max covðt; yÞ~maxðtTyÞ ¼ maxðwT XTyÞ

¼ max½wTðXTyÞ	 ð3Þ

The last equivalence is the scalar product of two vectors:

the unitary vector w and (XTy). The modulus of this last

vector is a constant for a given data, as it contains the

covariates between the N variables xn and y. Thus, the scalar

product is maximum if both vectors are parallel. As w has to

be parallel to (XTy), and as all variables have unit variance,

it leads finally to expression (4), demonstrating that the

elements of the weight vector w (that is, the weights of the

variables in the first PLS component) are proportional to the
linear correlation coefficients between the variables and the

response variable.

w ¼ XT � y

jjXT � yjj
~

xT1 � y

xT2 � y

. . .

xTN � y

2
666666666664

3
777777777775

~

covðx1; yÞ

covðx2; yÞ

. . .

covðxN ; yÞ

2
666666666664

3
777777777775

¼

rðx1; yÞ

rðx2; yÞ

. . .

rðxN ; yÞ

2
666666666664

3
777777777775

ð4Þ

According to the type of unfolding used, Fig. 2 represents

the trajectory of the weights for the juxtaposition of the 52

trajectories. It can be observed that from the aligned variable

number 7364, weights fluctuate in a band narrower than for

the previous variables. These weights correspond to seven

trajectories of stage 4 (4Taci, 4pH, 4t-aci, 4STIa, 4STIb,

4STIc and 4PC). To ensure that the observed weights (pro-

portional to the correlation coefficients) do not differ signif-

icantly from zero, a PLS has been conducted with these

trajectories, and the first component is not significant. The

absence of correlation does not necessarily imply that these

variables do not have any real effect over the hydroxyl index,

but that the variability observed for these variables in the

group of 37 batches does not produce any significant effect on

the variability of the final quality. It is possible that one

variable affects the final quality but is very well controlled,

with a very reduced variability from batch to batch: This

would provoke no observed correlation. Then, it can be

ascertained that these process variables are not critical points

that require a better control, and they have been removed

from the model.

Working with thousands of variables, the probability of

obtaining correlation at random is high. That obliges one to

be careful during the diagnosis. Although the probability of

randomly getting a variable with high weights at absolute

value is high, the probability of randomly finding a group of

aligned variables at consecutive moments in time is low. For

that reason, emphasis should not be laid so much on par-

ticular values of high correlation, but on runs with high

weights at absolute value (groups of consecutive aligned

variables in the weight plot), which have been called ‘‘runs

of correlation’’. Taking a look at Fig. 2, the problem is that

nearly all the trajectories not yet discarded have some runs

of correlation. The diagnosis gets complicated, because the

presence of correlation does not imply the identification of a

critical point. Only when correlation is due to a cause–effect

relationship (that is, causal correlation) will a critical point

be identified. In observed data, however, this diagnosis is

not possible if the model is not supplemented with external

information.

A good review of different variable selection methods for

PLS models is presented by Gauchi and Chagnon [16], who

use real data from chemical batch processes and apply

different methods based on statistical criteria related with

the goodness of fit and prediction, but do not implement

external information of the process. The methodology used in
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the present paper to try to distinguish which runs of correla-

tion are associated with critical points is based on the

application of technical information of the process according

to the following procedure. For every trajectory of process

variables, the evolution of the weights w versus time (select-

ing the range of the aligned variables in Fig. 2 corresponding

to that trajectory) has been compared with the original

trajectory of the process variable, with data aligned without

centering nor scaling (where the trajectories of the batches

with higher values of IOH have been highlighted). Between

both charts, there is a total correspondence, as for every

aligned variable of the trajectory, the weight and original

values for the 37 batches are known. Once the runs with

correlation are identified, they are matched with the original

trajectory, and external information of the process (technical

knowledge) is applied in order to see if any kind of diagnosis

is possible, or to find an explanation for the observed

correlation. Of course, it requires a good knowledge of the

process and of the likely causes responsible for the variability

of the final quality. In the case that no reasonable explanation

can be found and that the process variable in the period with

correlation is not considered important, the whole trajectory

has been removed.

The methodology used is now described with an example:

the case of 3Tad (trajectory of temperature at a point of the

cooling circuit in stage 3). The top of Fig. 3 shows the

weights of that trajectory (obtained from Fig. 2, selecting the

range of the aligned variables from 4870 to 5067 that

correspond to that trajectory), and at the bottom, the original

aligned values. The vertical scale has been omitted for

reasons of confidentiality. A run of correlation with weights

greater than 0.020 can be observed at the top of the figure.

Compared with Fig. 2, these values of weights are high, with
Fig. 3. Correspondence between the weights of the trajectory 3Tad in the first co

(trajectories for the six batches with higher values of IOH highlighted in thicker l
respect to the rest of variables. If in the interval of time when

this run occurs we observe the original values of the unscaled

variables, it corresponds with a period where the temperature

has been very well controlled, with a very low variability, in

comparison with the subsequent moments with higher var-

iability, although no correlation is observed. Using technical

knowledge, it is clear that this observed correlation is not

causal; thus, the trajectory can be discarded.

Operating with this methodology, trajectories have been

removed progressively. If a trajectory was considered im-

portant, and any technical fundament could be formulated to

support or explain the correlation, it was maintained in the

final model. In most cases, however, it was not so easy to

decide whether the trajectory was important or not. First, the

trajectories considered less important have been discarded,

producing an intermediate model where it was risky to

remove more variables. However, to try to achieve the

diagnosis, it is necessary to take the risk of discarding more

trajectories, assuming that a trajectory with causal correla-

tion may be removed. It should be pointed out that extensive

variable selection is very risky and that this must be carried

out cautiously. Finally, a model with only seven trajectories

has been obtained. The first component is significant in the

initial, intermediate and final models. The parameters RX
2, RY

2

and Q2 of the three models are compared in Table 3. The

methodology is slow and time consuming, as all of the

trajectories have been carefully analysed, and it also requires

a deep knowledge of the process.

It can be observed in Table 3 that in the intermediate

model, when about two thirds of the aligned variables are

discarded, the goodness of fit and the goodness of prediction

are higher. When only seven trajectories are left in the final

model, both parameters decrease, but are higher than the ones
mponent of the initial PLS model, and the aligned original values of 3Tad

ines).



Table 3

Comparison of three PLS models

PLS model Na Nb RX
2c RY

2d Q2e

Initial 52 8985 0.15 0.53 0.30

Intermediate 19 3107 0.12 0.71 0.53

Final 7 1067 0.19 0.57 0.46

a Number of trajectories included in the model.
b Number of aligned variables included in the model.
c Variance explained by the first PLS component (RX

2).
d Goodness of fit for the first PLS component (RY

2).
e Goodness of prediction for the first PLS component (Q2).
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for the initial model. Thus, this final model can be considered

suitable for diagnosis purposes, as it retains the main varia-

bles contributing to the predictive capability of the model.

Fig. 4 shows the weights of the first component for the

final PLS model. Vertical dashed lines separate the seven

trajectories, that are the following (in the order appearing in

the figure): 1FPcu, 1PR, 1Ta, 2PR, 4PR, 4VAL_cu and 4Ta.

It can be observed that all of them have runs of correlation

with high absolute weights. These values are not comparable

with the ones from Fig. 2, because when trajectories are

removed, weights are recalculated to maintain the unit

modulus of the weight vector, although the relative values

among the aligned variables remain the same. The last three

trajectories belong to stage 4 and present high absolute

weights, similar to the rest of trajectories. Nevertheless, by

applying technical knowledge, those trajectories can be

discarded. The hydroxyl index is a quality parameter related

with the chemical structure of the polymer. At the end of

stage 3, it is already formed, and in stage 4, operations that

do not alter the chemical structure take place. So, with this

information, it is known that the observed correlation for the

latent variables in stage 4 will not be causal, and hence not

associated to critical points. Finally, the remaining four

trajectories can be considered as hypothetical critical points:

1FPcu, 1PR, 1Ta and 2PR.

3.2. Block-wise PCR

In the previous methodology, a variable selection proce-

dure has been carried out with the unfolded matrix of 37

batches by 8985 aligned variables. However, the reduction
Fig. 4. Weights of the first component for the
of variables to interpret PLS models often removes infor-

mation. When the X matrix can be divided into meaningful

blocks, different methods have been described with names

like multiblock PLS, consensus PCA, hierarchical PCA or

hierarchical PLS. Westerhuis et al. [17] review these algo-

rithms and compare them from a theoretical point of view.

All of them produce a model at two levels: the upper level

where the relationships among blocks are modelled and the

lower one showing the details of each block. The model is

conducted by a single algorithm with a hierarchical structure

that calculates weights and scores at both levels. Many

applications of these multiblock models have been de-

scribed in the chemometric literature [18].

In batch processes, the unfolded matrix is the arrange-

ment slice by slice of the trajectories of process variables. In

the present case, the X matrix could be subdivided in four

blocks, corresponding to the different stages of the process,

or even in 52 blocks (one per trajectory). The use of

multiblock models can take advantage of this subdivision,

and successfully applications have been described for mon-

itoring and fault diagnosis [19]. Different methods like

multiblock PLS or hierarchical PLS could be applied to

diagnose the PPOX process. In this paper, however, a

simpler procedure is presented, carrying out the analysis

in two stages. First, for every one of the 52 trajectories that

comprise the unfolded matrix, a PCA has been carried out

with data centred and scaled to unit variance, and the

significant components have been obtained, whose number

ranged from 1 to 13. Due to the small number of batches

available, all of them have been used to build the models.

No batches have been considered as a prediction data set to

validate the components. Nevertheless, the cross-validation

procedure implemented in the software SIMCA-P has been

used. From each component, the percentage of explained

variance in X (RX
2) has been worked out. The projection of

the batches over every component generates a latent vari-

able, which allows the transformation of every submatrix of

trajectory into a new submatrix of scores, with a reduced

number of new latent variables. For example, beginning

with the trajectory of the temperature in stage 1, formed by

230 aligned variables, conducting a PCA, nine significant

components are obtained, which account for 97.2% of the
final PLS model, with seven trajectories.



Table 4

Latent variables selected from the Score Matrix

Stage Na Nb Nc

1 67 6 6

2 65 13 13

3 115 15 10

4 65 9 9

Total 312 43 38

a Initial number of latent variables.
b Number of latent variables significantly correlated with IOH (at

a= 0.05).
c Number of latent variables significantly correlated with IOH and

RX
2>0.05 (explained variation of the trajectory).
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total variance of the data. Carrying out 52 PCA (one per

trajectory), the initial unfolded matrix of 8985 variables is

transformed into a Principal Component score matrix with

only 312 latent variables. Although the reduction in size is

considerable with respect to the initial unfolded matrix, both

matrices contain nearly the same information.

In a second stage, this PC score matrix has been analysed

to obtain predictive models of the final quality by using

simple linear regression. This methodology has been called

‘‘block-wise PCR’’, as it is a Principal Component Regres-

sion carried out in every block of aligned variables than

comprise a trajectory. As one of the referees has suggested,

and also according to Wold et al. [20], an alternative

approach would have been to conduct PLS models with

the blocks, given that a y variable is present.

For every one of the 312 latent variables, a simple linear

regression analysis has been conducted, considering the IOH
as response variable, and two parameters have been

obtained: the squared linear correlation coefficient (that will

be referred as RIOH
2 ) and the p-value (that shows if the

correlation is significant). It results that from the 312 latent
Fig. 5. Overlapping of the CUSUM chart of the hydroxyl index with the eight laten

when the change of trend occurs, with the indication of the batch order.
variables, only 43 are significantly correlated with the IOH,

at a confidence level of 95% (that is, with a p-value < 0.05).

The maximum RIOH
2 found has been 34%.

It seems reasonable to suppose that those latent variables

with causal correlation will explain a certain amount of the

variance of the corresponding trajectory. If a latent variable

presents a very low RX
2, although it is significantly correlated

with the IOH, it is probable that the correlation is at random.

The criteria adopted has been to remove those latent

variables that explain less than 5% of the variance

(RX
2 < 5%). This happens in five latent variables from stage

3 whose RX
2 < 3% and with RIOH

2 ranging from 16.6% to

20.4%. Thus, 38 latent variables are remaining, as stated in

Table 4.

It seems reasonable that the critical stage of the process

will be linked to one of the latent variables with higher

values of RIOH
2 . In this case, however, considering the nine

latent variables with RIOH
2 > 20%, three of them belong to

stage 1 (whose values are 34.0%, 25.5% and 21.2%), two

belong to stage 2 (20.2% and 29.4%), three belong to stage

3 (21.1%, 21.5% and 23.5%) and one to stage 4 (27.6%). It

is not clear which is the critical stage, as no one presents

higher values or a specially high value. Therefore, some

kind of additional information is required to achieve a

further selection among the 38 latent variables, aimed at

identifying the critical stage.

Arranging the values of IOH versus time, it results that the

greater values of IOH are obtained after batch number 20. To

check if a swift in the mean value of the quality index has

occurred, a chart of cumulative sums (CUSUM) has been

plotted integrating over time the difference of the values

with respect to the mean. This chart is included in Fig. 5

together with others of the same type that will be com-

mented later.
t variables of Table 5 from stages 1, 2 and 3. Vertical lines mark the instant



Table 5

Further analysis with the 10 latent variables selected from Fig. 6

Latent variable Stagea Nvb PCc RX
2d RIOH

2e p-valuef RCUSUM
2g

1FPcu_1 1 61 1 0.90 0.34 0.0002 0.93

1Ta_1 1 230 1 0.43 0.21 0.0048 0.90

1PR_2 1 227 2 0.15 0.25 0.0020 0.84

1PRd_3 1 49 3 0.15 0.19 0.0077 0.93

1LEV_2 1 225 2 0.18 0.17 0.0116 0.88

2PR_cu_1 2 134 1 0.62 0.29 0.0005 0.72

3PC_cu_1 3 128 1 0.96 0.23 0.0023 0.75

3Tad_2 3 198 2 0.14 0.21 0.0048 0.83

4PR_4 4 294 4 0.06 0.18 0.0096 0.86

4PR_cu_4 4 241 4 0.08 0.28 0.0008 0.81

a Batch stage of the trajectory that generated the latent variable.
b Number of aligned variables of the trajectory that generated the latent

variable.
c Number of Principal Components of the trajectory that corresponds to

the latent variable.
d Variation of the trajectory explained by the component (RX

2).
e Squared correlation coefficient between the latent variable and IOH.
f p-value of the linear regression between the latent variable and IOH.
g Squared correlation coefficient between the latent variable and IOH

using cumulated values.
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A change of trend is detected, which occurs at about

batch number 18 (produced on December 23, 2000). Some-

thing must have changed in the process around that date,

which has provoked a change in the mean value. This result

supplies an important information, because the likely latent

variables with causal correlation associated to critical points

should also suffer a change of trend around that date. With

the same procedure used to obtain the CUSUM chart for the

values of IOH, the CUSUM values (according to the tem-

poral order of the 37 batches) have been calculated for every

one of the 38 latent variables selected, obtaining a matrix of

CUSUM values of scores. The idea is to find those latent

variables that produce a CUSUM chart most similar to the

one for the hydroxyl index. For that purpose, a simple linear

regression has been conducted to relate the CUSUM values

of every one of the 38 variables, with the CUSUM values of

IOH, and the squared correlation coefficient of the regression

has been calculated, which will be referred to as RCUSUM
2 .

Fig. 6 represents the relationship between the coefficients

RIOH
2 and RCUSUM

2 for the 38 latent variables.

We observe that the values of RCUSUM
2 are higher than

RIOH
2 . Such high apparent correlation should not lead to

confusion, and it should be remembered that the CUSUM

values are calculated for a certain batch using the informa-

tion of all the previous batches. So, the coefficient RCUSUM
2

does not account for the percentage of the variability of IOH
explained by the latent variable, as it is the case for the

coefficient of determination RIOH
2 . It is just an index, and the

greater the value, the more similar will be the CUSUM chart

to the one for the IOH.

A group of seven latent variables can be observed in Fig.

6, with RCUSUM
2 values lower than the rest. It means that the

shape of the CUSUM chart for these variables is very

different to the one for the IOH, so they will not be

associated to critical points. For the rest of latent variables,

a certain positive correlation is observed: the latent variables

with higher correlation with the IOH also present, on

average, more correlation working with CUSUM values.

In Fig. 6, a line has been drawn that leaves 10 latent
Fig. 6. For every one of the 38 latent variables indicated in Table 4,

relationship between the squared correlation coefficient calculated with the

hydroxyl index (RIOH
2 ), versus that coefficient calculated with the

cumulated values (RCUSUM
2 ).
variables above. The latent variables with higher values

for both correlation coefficients require a deeper analysis,

and their characteristics are presented in Table 5. In Fig. 6, it

can also be observed that the greater values correspond to

stage 1, which seems to point to this stage as the likely

critical one respect the quality parameter.

From the information in Table 5, by applying external

information of the process it is possible to discard the two

latent variables of stage 4, as the polymer is completely

formed in that stage. Besides, those latent variables explain

little variance, less than 10%. The eight remaining ones will

require a further analysis to try to identify the critical points.

For that purpose, the CUSUM charts of these eight latent

variables, together with the one of the IOH, have been

overlapped in Fig. 5, in order to check which chart matches

the change of trend with the one for the IOH. Four different

changes of trend can be observed, that occur approximately

in batches number 15 (variable 2PR_cu_1), 18 (IOH), 23

(3Tad_2, 1PR_2 and 1LEV_2) and 26 (3PC_cu_1). These

latent variables cited can be discarded, as their change of

trend does not coincide with the one of the IOH. For the

remaining three latent variables (1PRd_3, 1FPcu_1 and

1Ta_1), it is not clear if the change of trend occurs in batch

18 or 23, and they will be discussed by applying technical

knowledge of the process.

–1FPcu_1: First component of the cumulated flow of

polyalcohol once the addition finishes. When the control

valve closes, the integrator of the flowmeter slowly

increases the value of total addition. The correlation

detected indicates that the greater value of this cumulated

flow, the greater IOH. It is known by technical knowledge

that if the amount added of polyalcohol increases, so does

the IOH, and that relationship is known. So, the correlation

found could be a result of a fault in closing the addition
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valve. However, according to the process engineers, when

the predefined setpoint is reached, the valve closes com-

pletely, and even assuming an escape of polyalcohol

through the valve, the differential amount registered by

the flowmeter would not justify the variation of the

hydroxyl index, according to the relationship between both

variables.

–1PRd_3: Third component of the derivative of pressure

during the dehydration of stage 1. This component explains

only 15% of the corresponding derivative trajectory. Ana-

lysing the weights of the variables in the 3rd component of

this trajectory, it results that the variables with higher

weights correspond to the first minutes of the vacuum ramp

of the dehydration, when the descent of pressure is more

steep. According to technical knowledge, it is known that

the profile of pressure affects the residual content of water at

the end of the dehydration, and that the variation of this

content may also affect the hydroxyl index. However,

according to the engineers, the residual water content is

likely to be related with the pressure at the end of the

dehydration, whose importance has not been outlined in the

PLS analysis. Although it is not possible to determine if this

observed correlation is causal, taking into account that the

change of trend matches approximately the one of the IOH, it

will be a factor to be considered.

–1Ta_1: First component of temperature inside the tank

during stage 1. This explains nearly half of the variance of

the trajectory, and the shape of the CUSUM chart is quite

similar to the equivalent chart of the IOH. To obtain more
Fig. 7. Correspondence between the weights of the trajectory of 1Ta in the first Prin

six batches with higher values of IOH highlighted in thicker lines). Vertical dashe
information about this latent variable, the weights of the

variables of temperature in stage 1 in the first Principal

Component are presented in Fig. 7, and compared with the

original values of the trajectory.

It can be observed in the upper part of Fig. 7 that the

higher weights in absolute value correspond to the end of

the sub-stage 1 (addition of polyalcohol) and all the sub-

stage 2 (addition of alkaline solution). The lower part of Fig.

7 presents the trajectories of temperature during stage 1 in

original aligned values, for the 37 batches, and those

highlighted in thicker lines correspond to the batches with

higher values of IOH. The vertical scale has been omitted for

confidentiality reasons. Comparing both charts, in the peri-

od with higher absolute weights, the batches with higher

hydroxyl index present lower values of temperature. If the

trajectory of weights in the PCA model (upper part of Fig.

7) is compared with the trajectory of the weights of 1Ta in

the final PLS model (3rd trajectory of Fig. 4), a similar

profile can be observed. The information from both charts is

equivalent: The negative weights in the PLS model for the

trajectory of temperature imply a negative correlation with

the final quality, which can be observed in the original

trajectories. The weights in the PCA model reflect the

period that accounts for that latent variable correlated with

the IOH.

According to technical knowledge of the process, as the

hydroxyl index is related with the chemical structure of the

polymer, the main causes of its variability are factors

affecting the thermodynamics of the reaction, mainly the
cipal Component, and the aligned original values of 1Ta (trajectories for the

d lines show the three sub-stages that comprise this stage.
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exact amount of reagents and the likely presence of

residual water. The effect of the kinetics of the reaction

is unknown, that is, how can the temperature of the

alkaline solution affect the IOH. Possibly, the temperature

inside the tank during the second sub-stage is correlated

with the temperature of the polyalcohol when it enters the

tank (which is not registered). It could be that, for any

reason, a variation in this temperature causes a measuring

error in the flowmeter that controls the addition of poly-

alcohol, which would explain the variation of the hydroxyl

index. However, it is not possible to know if the correla-

tion found is causal, that is, if the variation of temperature

during the addition of alkaline solution is responsible for

the variability of the IOH, or if there is another cause that

provokes the variation of that temperature and the IOH at

the same time.

3.3. Further studies proposed

Although the results obtained have not achieved a

complete diagnosis of the process, the methodology applied

has identified some latent variables as potential critical

points, supported by hypotheses based on external informa-

tion of the process that would justify the variation of the

hydroxyl index. To corroborate if the results obtained are

consistent, a new set of batches corresponding to a different

period of time could be analysed. If we suppose that the

main underlying causes of the variability of the IOH remain

the same along the time, a consistency study with new

batches should lead to similar results, and, at the same time,

would allow the selection of the variables more clearly

associated to critical points.

Despite the interest of this consistency study, the only

way to develop a predictive model based on cause–effect

correlation in order to find the optimum operative condi-

tions of the process and to identify definitively the critical

points is by means of an experimental design. A DOE

planned without having carried out this analysis would not

have made sense, due to the high amount of data collected

from many process variables. However, now, there are

suspicions about a reduced set of process variables associ-

ated to potential critical points. Although the DOE proposed

has not been achieved yet in the factory, it should be

conducted according to the factors selected by the method-

ology used. Temperature during stage 1 (in particular,

during the addition of alkaline solution) has been identified

by both approaches. So, it should be one of the factors for

the DOE. However, according to technical knowledge, it is

supposed to be related with the temperature of the polyal-

cohol while entering the tank, so this additional factor

should also be considered. Another one is the cumulated

values of the flow of polyalcohol (1FPcu), identified by

both approaches. As commented in Section 2.2, it is known

that a variation of the total amount of polyalcohol affects the

hydroxyl index. Pressure in stage 1 is another key process

variable that both approaches have identified: The original
values appear to be important with PLS, and the derivative

of the trajectory, with block-wise PCR. So, it is recommen-

ded to include both factors: the derivative of the pressure

during the vacuum ramp and the pressure at the end of the

dehydration. Finally, the pressure in stage 2 is another

potential critical variable, detected only with the PLS

approach. In can be seen in Fig. 4 that the highest weights

of this trajectory are reached at the beginning. So, the factor

to include in the DOE should be the pressure at the

beginning of stage 2.

The implementation of any statistical process control

approach comprises an off-line stage for modelling and an

ulterior stage of on-line monitoring. This paper deals with

the modelling stage, focused on the development of a

predictive model of the IOH aimed at diagnosis. Generally

speaking, once identified the causal factors that affect the

final quality, two situations are possible. In some cases, an

action to improve the engineering process control of the

critical points would be enough to avoid a wrong final

quality. For example, if the causal factor is an inadequate

mass of a reagent, the use of a more accurate flowmeter

would improve the quality. In other cases, the engineering

control does not solve the problem, and it can be supple-

mented with multivariate on-line models to monitor the

critical points, in order to early detect out-of-control sit-

uations that can negatively affect the final quality. These

models are carried out with the key variables that have

causal correlation with the quality or show no correlation

but are known to affect the quality if their control fails. In

the first case models will be based on PLS, and in the

second one, on PCA.

Nevertheless, in chemical processes, some authors [4]

recommend the monitoring with PCA models of all the

process variables, as potentially any out-of-control situation

could affect the composition or chemical structure of the

product and have an effect in the quality perceived by

consumers, which is not always measured by the quality

parameters analysed.
4. Conclusions

Aimed at diagnosing the causes of variability of the

hydroxyl index (IOH) of PPOX produced in a chemical

factory, process variables from 37 batches have been ana-

lysed by applying the methodology of Nomikos and Mac-

Gregor [1]. Carrying out a PLS to the unfolded matrix of

aligned variables, the first component is significant, but the

identification of the key process variables that cause the

variability of the IOH (critical points of the process) is not

easy, because when analysing observed variability not

generated by means of an experimental design (DOE), it

is not possible statistically to know if correlation is due to a

cause–effect relationship associated to a critical point.

The methodology proposed in this paper to identify the

critical points in complex processes with a very high
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number of variables potentially influencing the final quality,

consists of two stages. First, the analysis of the observed

data with multivariate statistical methods based on projec-

tion to latent structures, supplemented with technical infor-

mation of the process, in order to screen and detect the

potential key process variables. Afterwards, the execution of

a DOE with the previously selected potential key variables

to identify significant factors and set optimum operative

conditions, achieving an improvement of the final quality of

the product.

Two different approaches have been applied to analyse

the observed data in order to screen the likely key process

variables. The first one uses PLS regression with a progres-

sive simplification of models applying a variable selection

method based on comparing the trajectory of weights in the

PLS model with the original trajectories of the batches and

incorporating technical information of the process. This

procedure focuses on the analysis of parts of the trajectory

with high weights in absolute value (runs of correlation), in

order to avoid random correlation. The main drawback of

any selection method is the risk of removing variables with

causal correlation and the requirement of a deep knowledge

of the process. In the end, the final model for this process

contains four potential key process variables.

Another approach presented is a simple procedure that

has been denominated block-wise PCR. From every trajec-

tory of a process variable, a PCA has been carried out to

obtain the significant latent variables. Afterwards, those

latent variables significantly correlated with the IOH have

been selected. After a second pruning process, by using

CUSUM charts, three potential causal variables have been

selected. They also present a change of trend that approx-

imately matches the one that occurs with the IOH. Although

these likely key process variables are included in the group

identified with the previous approach, this one has resulted

much more straightforward and faster in conducting the

analysis, without requiring so much technical information of

the process.

Although the causes of variability of the IOH have not

been identified yet, some process variables have been

pointed out as likely critical points. The only way to finally

achieve this diagnosis is with a DOE conducted on these

factors. Once those with a significant effect on the final

quality have been identified, it will be possible to set the

optimum levels and to improve their control reducing the

variability around their optimum values or trajectories, in

order to force the hydroxyl index to move around the
nominal value with minimum variance, producing a quality

improvement of the PPOX.
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