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ABSTRACT 

Zeng, Yousheng and Hopke, P.K., 1990. Methodological study applying three-mode factor analysis to three-way 

chemical data sets. Chemometrics and Intelligent Laboratory Systems, I: 237-250. 

A multivariate data analysis method, three-mode factor analysis (TMFA), has primarily been employed in the social 
sciences. Although it has not been extensively used in the natural sciences, TMFA provides the opportunity to examine 

data that are collected in form of a three-way matrix. With TMFA, one can simultaneously examine system variations 

in the three dimensions to determine the causal factors that control the system. This approach has been applied to the 

receptor modeling problem that attempts to relate ambient air quality to sources of pollution. By simulating an air 

pollution system, the relationships between the results of TMFA and the underlying physical model are investigated. In 

this way, the physical interpretation of the results of TMFA has been found. The model can be generalized to suit 

many three-way chemical data sets. It is also found that varimax rotation of the initially derived factors greatly 

improves their interpretability. The rotated solution can reflect the nature of the underlying physical system. 

INTRODUCTION 

In many chemical experiments or environmen- 
tal measurement programs, data are gathered in 
such a way that they may be organized as a 
three-way table. For example, chemical species 
may be determined in airborne particulate sam- 
ples collected at several sampling sites during dif- 
ferent periods of time. Similar situations can be 
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easily found in chemical studies. Measurement of 
absorption spectra of different wavelength could 
be made at certain positions in a system (e.g. 
along a chromatography column, within a reactor 
used in kinetics studies) under various experimen- 
tal conditions. The measured properties, locations, 
and conditions can then serve as three modes of 
the three-way matrices. These data matrices may 
contain a wealth of information thai could be 
revealed by appropriate data analysis methods. 

Factor analysis [l-3] is a widely used multi- 
variate method for finding causal factors that con- 
trol the system. In the air pollution example men- 
tioned above, factor analysis can be applied to a 
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two-way matrix (chemical species at various loca- 
tions or chemical species in different periods, i.e. a 
plane in the three-way matrix). The results of 
factor analysis can: (1) determine the number of 
types of pollution sources (factor number) in the 

system; (2) identify the sources by their chemical 
characteristics; and (3) investigate their influences 
in different situations [3,4]. A special factor analy- 
sis technique called target transformation factor 
analysis (TTFA) [2,3] can quantitatively obtain 
the mass contribution of each source to each 
sample [5]. Many similar applications for chemical 
data can be found in the monograph by Malinow- 

ski and Howery [2]. 
However, conventional (two-mode) factor anal- 

ysis can only be applied to a two-way matrix. The 
analysis is thus only on a single plane oriented in 
certain direction in the complete three-way data 
block. Since only a limited part of the data is 
used, the results may be distorted and some infor- 
mation about the interactions among the modes 
may be lost. There is another factor analysis 
method called three-mode factor analysis [6,7] (de- 
noted as TMFA hereafter). This method works 
directly on the full three-way data matrix as its 
input, and thus can examine variations among all 
three modes simultaneously. The ability to ex- 
amine three-way observational data suggest the 
potential utility of TMFA. 

TMFA was originally introduced by Tucker in 
the 1960s for interpretation of psychological stud- 
ies [6]. Since then, many applications have ap- 
peared in the social science literature [7]. In these 
applications, there was no underlying physical 
model for the studied systems. Therefore, the in- 
terpretation of the results has only been presented 
in statistical sense. Because of a lack of an un- 
derlying physical model, application of TMFA in 
natural sciences has been very limited. Only a few 
applications are found in the literature [8-111. The 
model in these applications “is not a physical, but 
a mathematical-statistical model” [lo]. TMFA is 
still not a clear model that natural scientists can 
meaningfully relate to their physical systems. 
However, it is an attractive method because it 
opens a new dimension to extract more informa- 
tion. In order to explore the application of TMFA 
to three-way environmental or chemical data and 

examine its interpretation in terms of the physical 
and chemical processes operating within the sys- 
tem, a methodological study on data with a known, 
well defined structure has been performed. 

THEORY 

The basic concept of TMFA is to extend the 
two-mode (conventional) factor analytical model 

to three-way data. Each mode corresponds to a 
class of variables, i.e. a ‘mode’. The term ‘mode’ is 
used to mean a “set of indices by which data 
might be classified” [6]. Through TMFA, the data 
cube is decomposed into three two-way matrices 
(called factor loading matrices) and one three-way 
matrix (called the core matrix). Similar to conven- 
tional factor analysis, most of the variation of 
measured variables is compressed into a few fac- 
tors according to the covariance among the varia- 
bles. The results can determine: (1) how many 
underlying causal factors are controlling the sys- 
tem; (2) what the relationship is between the 
factors and variables; and (3) how much of the 

system variance is accounted for by the factors. 
TMFA model is presented in terms of elements 

of the factor loading matrices, A, B, and C, and 
the core matrix, G. 

“P4 

The model can also be expressed in matrix form 
with a Kronecker product [12]. 

iX~jk)=;AmG~pq)(~‘j~~‘k) (2) 

The notational device that Tucker [6] employed 
has been used here. The subscript (e.g. i) is used 
in several related, but distinct roles: (1) as a 
general identification of the mode; (2) as a sub- 
script identifying the mode to which an element 
belongs, (3) as a variable identification symbol for 
the elements in the mode. The pre-subscript letter 
denotes the row mode while the post-subscript 
letter is the designation for the column mode. 
Reversal of the subscripts indicates transposition, 
for example, ;Aj is the transpose of jAi. The 
matrix ix, jk) is the three-mode data matrix re- 
arranged as a two-mode matrix by sequentially 
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placing all the vertical planes, that are parallel to 
the side planes of the three-mode matrix, side by 
side along the row direction. The designation (jk) 
is called combination mode. The order (jk) may 

be read as j-outer loop, k-inner loop. 
The Kronecker product of p Bj and $Jk, de- 

noted aspBj @qCk, yields (pqlHcjk). Then cpqjHcjkj 
can be represented as below as a supermatrix 
containing submatrices proportional to the matrix 
C 4 k 

’ (b,lqck) (b12qck) *.. 

(pqjHcjk)= (b21qck) (bqck) ... 

! I 

(3) 

\ 
. . . 

Using these definitions and notations, the three- 
mode problem is reduced to a two-mode problem 
as in eq. (2). Tucker [6] showed that the matrices 

iA m, jB,,, and kCq in eq. (2) could be obtained 
from the matrices iMi, jPj, and kQk. These latter 
matrices are analogous to covariance matrices in 
conventional factor analysis. 

iMi =I x(jk,xi (44 

jp, =j x(ik,xj 
(4’4 

k Q k  = k x(ij,xk (44 

The factor loading matrices i A,,,, jBp, and kCq can 
be obtained in this way: m significant eigenvec- 
tors from iMi constitute iA,; p significant eigen- 
vectors from ,Pj constitute jBp; and q significant 
eigenvectors from kQk constitute kCq. 

The core matrix mG+r) is given by 

mGW = m ATX,jk, ( jBp’ @kc:) 

where 

,A+ = ( ,A~A,)-‘,A~ 

,B,+ = ( pBj~,)-l,B, 

qck+ = ( qCkcq)-lqCk 

(5) 

(64 

(6b) 

(6~) 

Since matrices A, B, and C are column-wise sec- 
tions of orthonormal, 

,AiAm=,I,, pBjBm=pIp, qCkCq=q’q’ (7) 

Then, 

,A+ =,,,Ai, ,Bj+ =pBj, qc: =qCk (8) 

Eq. (5) becomes 

mG(JW = m A;Xcik)( jBp @k’q) (9) 

In principle, all the system information is con- 
tained in the three factor loading matrices (A, B, 
and C) and one core matrix (G) in terms of system 
causal factors. As in conventional factor analysis, 
each loading matrix (e.g. iA,) will show the re- 
lationship between the variables (i) and factors 
(m) in that mode. The squares of the elements in 
the core matrix are the indication of how much 
the system variance is accounted for by the corre- 
sponding combination of factors (m, p, and q) 
from each mode. This relationship can be seen 
from following equation: 

c c cxi’jk = c c cgi?zpq (10) 
i j k mPq 

In conventional factor analysis, a rotation is 
usually needed before interpreting the results. 
Tucker [6] also presented a transformation scheme. 
Let the matrices ,,,T,,, pTp*r and qTq* be square, 
non-singular matrices, and let 

,A,,,T,,,e =i A,, (114 

,-B,T,j =i BP* (lib) 

kcqTq* = kc,* WC) 

The m*, p*, and q* are transformed derivational 
modes. For core matrix: 

m.G(/J*q*) 

= (,T,.)-l,c(pq)[(p.Tp)-l @ (q*Tq)-‘] 

(12) 

In transformed form, eq. (2) becomes 

iX(,k) =i Am*Gcp*q*)(p*Bj@q* ck) (13) 

In terms of algorithms, there are several ap- 
proaches other than the method described above 
to perform TMFA. Kroonenberg [7] presented 
these approaches, particularly an alternating least 
squares algorithm (TUCKALS3, see Appendix). 

APPLICATION 

In applying TMFA to the natural sciences, it is 
desirable not only statistically, but physically to 
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Fig. 1. Map of the simulated system showing the Great Lakes and Southern Ontario, Canada. 

relate the TMFA model to the actual physical 
system. In order to examine these relationships, it 
is extremely useful to employ a simulated data set 
with a known underlying structure. 

Description of the simulated data 

An air pollution example can be simulated 
without loss of generality. A simulated physical 
system has been developed based on Ontario, 
Canada. The system is assumed to consist of eight 
sampling sites (Rl-R8) as shown in Fig. 1. Three 
classes of particulate pollution sources are consid- 
ered. The first one (Sl) is emissions from local 
coal-fired power plants. The sources in this class 
are considered as area sources and exist in all 
directions around the sampling sites. The second 
source type (S2) is assumed to be long-range 
transported power plant emissions from the Mid- 
west of the United States. The third source (S3) is 
a point source simulating a nickel smelter in Sud- 
bury, Ontario. Within a source class, the chemical 

composition of the emitted particles is assumed to 
be the same. The compositions given in Table 1 
were obtained by modifying reported data [3,13]. 

The samples are assumed to be collected during 
12 periods that have different wind directions and 
wind strengths (Fig. 2). The particles from differ- 

N 

A 
Fig. 2. Wind directions and strengths in the twelve periods. 
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TABLE 1 

Chemical compositions of the particles emitted from three 

classes of sources 

No. Element Source 1: Source 2: Source 3: 
local coal regional coal Ni smelter 

(Sl) (S2) (S3) 

1 Na 9.7 5.9 1.4 
2 Al 26 8.8 2.5 
3 Si 150 41 5 
4 S 15 71 40 
5 Cl 11 12 11 
6 K 10 6.3 5 
7 Ca 23 11.5 5 
8 Ti 2.6 1.7 2.8 
9 V 0.48 1.7 0.01 

10 Cr 0.4 0.9 1 

11 Mn 0.48 6.5 0.22 
12 Fe 18 10.7 44 
13 Ni 0.2 0.7 250 
14 cu 1.3 3.2 2 
15 Zn 3.2 32 1.9 
16 As 0.3 3 0.05 
17 Se 0.11 1.1 0.05 
18 Br 0.2 1.3 0.84 

19 Sb 0.03 0.9 0.05 
20 Pb 2 8.2 10 

ent sources are transported to the sampling sites. 
Under different wind condition, the mass contri- 
butions of the sources to the sites will vary. The 
assigned contributions are tabulated in Table 2, 
and they are constructed according to the system 
layout and the wind condition for each period. 

A simulated data set then can be produced 
from the chemical compositions and the mass 
contributions by the following equation, 

(14) 

where xijk = concentration of element i at sam- 
pling site j in period k (ng/m3 air); aih = content 
of element i in the particles coming from source h 
(Table 1) (ng/ng); Pb,k = mass contribution of 
source h at site j in period k (Table 2) @g/m3 
air). Actually, eq. (14) is the physical model of the 
system. Therefore, the method developed in this 
work will be applicable to other chemical data as 
long as a physical model in the form of eq. (14) 
can be established. 

Results 

The ‘observed’ data set created through eq. (14) 
is taken as the input data matrix to the TMFA 
computer program, TUCKALS3 [14]. Modes 1, 2, 
and 3 (i, j, and k) correspond to chemical ele- 
ments, sampling sites, and time periods, respec- 
tively. The data are centered and scaled in such a 
way that the mean of each frontal plane equals 
zero and the sum of squares per frontal plane 
equals one. The retained numbers of factors in 
each mode are determined according to the model 
fitting and the residuals (Table 3). Since the num- 
bers of factors need to be determined for all three 

TABLE 2 

Mass contributions of the sources in each sample 

Period Rl R2 R3 R4 

Sl s2 s3 Sl s2 s3 Sl s2 s3 Sl s2 s3 

1 711 385 1 685 308 3 608 178 13 534 133 29 
2 298 803 0 274 827 2 235 791 4 201 753 8 
3 239 171 1 254 835 3 198 809 3 222 843 5 
4 631 311 3 582 282 2 555 156 10 498 99 20 
5 209 281 2 234 268 1 209 217 3 229 198 5 
6 555 298 2 561 289 3 520 245 5 502 208 8 
7 192 259 1 213 269 2 197 203 3 203 201 3 
8 194 131 56 201 125 43 162 109 19 143 103 I 
9 491 172 70 482 156 92 421 148 67 393 162 41 

10 472 161 53 456 165 88 403 153 186 402 148 223 
11 209 153 8 211 171 11 189 151 22 162 139 17 
12 274 172 2 268 805 1 253 811 3 233 790 5 
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R5 R6 R7 R8 

Sl s2 s3 Sl s2 s3 Sl s2 53 Sl s2 s3 

437 123 15 485 109 11 207 82 2 248 78 1 
222 729 3 219 693 2 138 79 1 149 101 2 
199 632 2 183 591 1 109 108 2 132 171 1 
389 95 7 444 92 6 227 79 2 272 97 3 
173 235 3 176 219 2 93 523 183 91 489 125 
378 209 4 409 198 3 219 111 29 252 102 22 
151 212 1 149 199 1 90 309 301 85 345 339 
96 111 3 89 99 2 59 67 1 55 73 1 

387 151 20 378 148 18 198 77 2 179 65 1 
375 133 85 362 129 79 174 70 1 181 59 2 
108 117 25 93 119 27 89 63 1 76 58 2 

230 811 2 228 823 2 197 71 1 182 70 1 

modes, it is a more complicated problem as com- the role of each added factor can be seen. For 
pared to conventional factor analysis. To simplify mode 1, SS(Fit,) becomes larger and larger as 
the situation, one mode is examined at a time with more factors are taken. In other words, more 
the other two modes assigned a sufficiently high variation is accounted for. Meanwhile, the SS(Res) 
number of factors to insure that those two modes decreases and the overall model fit is improved. 
fit perfectly (five factors are used in this case). From eq. (A.15) in the Appendix, the overall fit, 
From the sum of squares of individual modes SS(Fit), is restricted by SS(Fit ,), that is the minima 
[SS(Fit,), SS(Fit,,), and SS(Fit,,,)J, the overall fit among all SS(Fit,), SS(Fit,,), and SS(Fit,,,), when 
[SS(Fit)], and SS(Res) (see Appendix and Table 3) 1, or 2, or 3 factors are taken for mode 1. As 

TABLE 3 

Sum of squares (SS) with different number of retained factors (standardized such that SS(Tota1) = 100) 

Number of SS(Fit t) 
retained factors (mode 1) 

Test for mode 1 (N2 = 5, N3 = 5) 

Nl=l 85.39 
N1=2 93.16 
N1=3 97.40 
N1=4 100.00 
N1=5 100.00 

Test for mode 2 (Nl = 5, N3 = 5) 

N2=1 100.00 
N2=2 100.00 
N2=3 100.00 
N2=4 100.00 
N2=5 100.00 

Test for mode 3 (Nl = 5, N2 = 5) 

N3=1 100.00 
N3=2 100.00 
N3=3 100.00 
N3=4 100.00 
N3=5 100.00 

SS(Fitt,) SS(Fitm) SS(Fit) SS(Res) 
(mode 2) (mode 3) (overall) (residuals) 

99.92 99.10 85.37 14.63 
99.92 99.06 92.70 7.30 
99.92 99.06 96.57 3.43 
99.92 99.06 99.06 0.94 
99.92 99.08 99.08 0.92 

88.49 99.10 88.49 11.51 
98.07 99.06 98.04 1.96 
99.35 99.10 98.47 1.26 
99.82 99.07 99.04 0.96 
99.92 99.08 99.08 0.92 

99.82 85.98 85.98 14.02 
99.82 93.32 93.31 6.69 
99.82 97.40 97.39 2.61 
99.82 98.59 98.56 1.44 
99.92 99.08 99.08 0.92 
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TABLE 4 

Factor loadings of the first mode 

i Element Unrotated Varimax rotated 

m=l m=2 m=3 m*=l m*=2 m*=3 

W) (S3) (S2) (Sl) (S3) (S2) 

1 Na - 0.046 0.047 0.009 -0.053 0.038 0.012 
2 Al 0.051 0.024 - 0.050 0.059 0.044 - 0.014 
3 Si 0.871 -0.112 - 0.274 0.920 0.024 0.019 
4 S 0.333 0.386 0.745 0.028 -0.004 0.902 
5 Cl - 0.004 0.096 0.062 - 0.037 0.057 0.092 
5 K - 0.041 0.059 0.005 - 0.049 0.050 0.016 
7 Ca 0.051 0.048 - 0.002 0.041 0.044 0.036 
8 Ti - 0.103 0.052 - 0.007 -0.102 0.050 - 0.018 
9 V -0.115 0.048 0.010 -0.118 0.039 - 0.010 

10 Cr -0.119 0.049 - 0.002 -0.119 0.044 - 0.021 
11 Mn - 0.090 0.066 0.071 -0.117 0.026 0.057 
12 Fe 0.043 0.183 - 0.054 0.029 0.187 0.048 
13 Ni 0.015 0.854 - 0.453 0.020 0.966 - 0.003 
14 CU - 0.102 0.058 0.021 -0.111 0.042 0.008 
15 Zn 0.054 0.153 0.380 - 0.088 - 0.039 0.402 
16 AS - 0.109 0.053 0.028 -0.119 0.035 0.009 
17 Se - 0.120 0.047 0.004 - 0.121 0.040 - 0.017 
18 Br -0.118 0.050 0.005 -0.110 0.043 - 0.014 

19 Sb - 0.121 0.047 0.002 - 0.122 0.041 - 0.019 
20 Pb - 0.069 0.100 0.067 -0.100 - 0.058 0.075 

factors are added to mode 1 beyond the third one, 
SS(Fit) is limited by mode 3. This result means 
that the factors following the third one are unnec- 
essary and that three factors should be retained 
for mode 1. Similarly, two factors are retained for 
mode 2. 

There must be one mode that will restrict 
SS(Fit) even when the highest number of factors 
are retained. Mode 3 is this limiting mode in this 

case. The criterion described above is not suitable 
for this mode. The methods used in conventional 
factor analysis may be used to determine the 
number of factors in this mode. In Table 3, 

SS(Fit,*,) increases as N3 increases. The incre- 
ments after N3 = 3 are less than 1.19% and tend 
to stabilize while the previous two increments are 
7.34% and 4.08%. Three factors are therefore re- 
tained for this mode. Thus, the numbers of factors 
are determined to be 3, 2, and 3 for modes 1, 2, 
and 3, respectively. The final SS(Fit) is 95% of 
SS(Total), and the SS(Res) is 5%. The output from 
the program is unrotated loading matrices A, B, C, 
and core matrix G (Tables 4-7, respectively). 

In conventional factor analysis, factor axis ro- 
tation is performed. Usually, a rotation transforms 
the results to ‘simple structure’ [4] and make them 
easier to interpret. A rotation can also be applied 
to the loading matrices of TMFA in the same 
manner because the loading matrices are two-way 
matrices as in conventional factor analysis. Several 
rotation methods (both orthogonal and oblique) 
have been tested (Table 8). These methods can be 

TABLE 5 

Factor loadings of the second mode 

j Site Unrotated Varimax rotated 

p=l p=2 p*=1 p*=2 
(zone 1) (zone 2) (zone 1) (zone 2) 

1 Rl 0.459 - 0.095 0.468 0.023 
2 R2 0.455 -0.100 0.465 0.017 
3 R3 0.405 -0.133 0.425 - 0.028 
4 R4 0.382 -0.126 0.401 - 0.027 
5 R5 0.326 - 0.082 0.336 0.003 
6 R6 0.322 - 0.078 0.331 0.005 
7 R7 0.175 0.691 - 0.004 0.713 
8 R8 0.181 0.676 0.006 0.700 
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TABLE 6 

Factor loadings of the third mode 

k Unrotated Varimax rotated 
(period) 

1 

q=l 
(regime ?) 

0.301 

q=2 
(regime ?) 

0.071 

q=3 
(regime ?) 

- 0.207 

q*=1 
(regime 1) 

0.372 

q’=2 
(regime 2) 

- 0.014 

q*=3 
(regime 3) 

0.013 
2 0.291 0.153 0.452 
3 0.289 0.1452 0.482 
4 0.303 0.047 - 0.207 
5 0.263 -0.542 0.039 
6 0.308 0.014 -0.147 
7 0.208 - 0.762 0.063 
8 0.301 0.092 - 0.131 
9 0.303 0.099 - 0.291 

10 0.284 0.166 - 0.380 
11 0.307 0.088 - 0.062 
12 0.291 0.149 0.449 

- 0.006 
- 0.027 

0.368 
0.064 
0.329 

- 0.040 
0.331 
0.429 
0.481 
0.2% 

- 0.005 

0.016 0.559 
0.004 0.579 

-0.037 0.008 
- 0.599 0.038 
- 0.075 0.051 
- 0.790 - 0.028 

0.000 0.079 
0.019 - 0.046 
0.095 -0.112 

-0.011 0.137 
0.012 0.555 

applied with or without row normalization. In row 
normalization, the factor loadings for each varia- 
ble are normalized by the corresponding com- 
munality. The similarities of the different rotated 
loadings to the true source compositions are listed 
in Table 9 in forms of correlation coefficients. In 
this particular form, the ‘simple structure’ means 
that loadings of one factor tend to relate to only 
one source composition. The higher in uniqueness 
and correlation to one source, the better is the 
solution. Therefore, the correlation coefficients can 
be used to select the best rotation method. Since 
the results of all the orthogonal rotation without 
normalization are equal, only one set (VARU) of 
values appears in Table 9. Also, the results of the 
oblique rotations are similar to that of the varimax 
rotation so that only the results of the oblimax 
rotation are listed in the table. 

TABLE I 

Unrotated core matrix 

Table 9 shows that the correlations increased 
after rotation, and the loadings become more 
identifiable, particularly for factors 1 and 3 (1 and 
2 in oblimax case). It should be noted that corre- 
sponding source compositions themselves are 
moderately correlated with correlation coefficient 
of 0.53. Varimax without normalization (VARU) 
and oblimax give the best results. Since orthogo- 
nal rotations have the advantage of maintaining 
factor loadings as representation of the weights of 
factors on variables, and the squares of core val- 
ues can be considered as explained variance, 
VARU is preferable to an oblique rotation. There- 
fore, varimax without row normalization has been 
selected, and is referred to as varimax for simplic- 
ity. The varimax rotated factor loadings were ob- 
tained and are given in Tables 4-6 along with the 
corresponding unrotated values. An inverse 

Regime 1 Regime 2 Regime 3 
(4=1) (4=2) (4=3) 

Zone1 Zone 2 Zone 1 Zone 2 Zone 1 Zone 2 
(p=l) b=2) (p=l) (p=2) (p=l) (p=2) 

Source 1 ( * = 1) 40.091 0.299 - 0.198 - 4.234 - 0.062 - 0.685 
Source 2 (m = 3j 0.036 - 1.591 0.158 0.431 8.164 - 2.010 
Source 3 (m = 2) - 1.136 - 0.886 -0.218 - 10.862 0.483 0.297 
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TABLE 8 

The rotations used in this work 

Orthogonal rotations: 

Varimax with row normalization (VARN) 

Varimax without row normalization (VARU) 

Quartimax with row normalization (Q'JAN) 
Quartimax without row normalization (QUAU) 
Fiquamax with row normalization (EQW 
Eiquamax without row normalization (EQUU) 

Oblique rotations: 

Quartimin with row normalization 

Quartimin without row normalization 
Direct oblimin with row normalization 

Direct oblimin without row normalization 

Oblimax l 

* The program used for oblimax is from SOUPAC package at 

University of Illinois. Others are taken from IMSL 

Stat/Library. 

transformation given by eq. (12) is needed to 
satisfy eq. (2) as eq. (13). The corresponding 
varimax rotated core matrix is given in Table 10. 

Discussion 

The interpretation of TMFA result is primarily 
based on: (1) the factor loading (e.g. aim) being 
the weight of the factor (m) on the variable (i); 
(2) the square of a element in the core matrix, 

g i,,, being a measure of the system variance 
accounted for by the combination of factors m, p, 
and q. 

The first mode 
Mode 1 is associated with the chemical proper- 

ties. From the unrotated loading matrix iA,,, in 
Table 4, it can be seen that factor 1 is highly 
related with element Si that is a major constituent 
of source 1 (Table 1). The loading pattern of 
factor 1 and composition of source 1 are similar. 
In other words, the values of these two columns 
are close if they are respectively resealed by di- 
viding by the maximum value of each column. The 
correlation coefficient between the two columns 
can be used as a measure of their similarity. This 
coefficient is 0.93 (Table 9). The varimax rotated 
loadings of factor 1 have stronger correlation with 
source 1. In summary, factor 1 in mode 1 is the 
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TABLE 10 

Varimax rotated core matrix 

Regime 1 

(4* = 1) 

Zone 1 

Regime 2 Regime 3 

(4* =2) (4* = 3) 

Zone 2 Zone 1 Zone 2 Zone 1 Zone 2 

(P* = 1) (P* = 2) (P* = 1) (P*=2) (P* = 1) (P*=2) 

Source 1 (m * = 1) 29.497 7.745 - 11.196 - 5.580 18.317 4.694 

Source 2 (m* = 3) 6.168 - 0.121 - 3.473 - 5.881 13.445 -0.109 

Source3(m*=2) 1.818 - 2.906 2.714 - 9.013 - 3.009 - 1.808 

representation of source 1 in the physical system. 
Similarly, factor 2 represents source 3 and factor 3 
represents source 2. In this way, the sources in the 
system can be recognized by their chemical char- 
acteristics reflected through the factor loadings in 
mode 1. 

The second mode 
The pattern of the unrotated loadings in this 

mode is clear (Table 5), i.e.sites Rl-R6 have large 
loadings of factor 1 and small loadings of factor 2, 
while sites R7 and R8 have large loadings of 
factor 2 and small loadings of factor 1. This 
contrast becomes stronger after rotation (Table 5). 
Referring to Fig. 1, all the sites can be divided 
into two groups according to the loadings. The 
concept of a ‘pollution zone’ can be introduced to 
refer a geographic region in which all the sites are 
polluted in a similar manner. Sites Rl-R6 belong 
to zone 1, R7 and R8 to zone 2. By using the term 
‘zone’, the sites are characterized. 

The third mode 
Based on the unrotated loadings in this mode 

(Table 6), the periods may be divided into three 
groups: one group of periods 5 and 7 (large load- 
ings of factor 2), one of 2, 3, and 12 (large 
loadings of factor 3), and one of the remaining. 
However, it is hard to say what group factor 1 
represents because all the loadings of factor 1 are 
essentially same. This mode is difficult to interpret 
because the factors cannot be directly related to 
physical situations. Fortunately, this problem is 
resolved by the rotation. The varimax rotated 
results (Table 6) clearly show that factor 1 repre- 
sents the group of periods, 1,4,6, 8, 9,10, and 11; 
factor 2 represents periods 5 and 7, and factor 3 
represents periods 2, 3, and 12. The concept of 
‘primary meteorological regime’ is then applied to 

refer to a class of meteorological conditions that 
govern the transport of pollutants to the receptor 
sites. Based on the rotated factor loadings (Table 
6) and the wind conditions (Fig. 2), three primary 

TABLE 11 

Primary meteorological regime and its relation with the factors and the periods 

Primary meteorological regime 
Corresponding unrotated factor 

Corresponding varimax 

rotated factor 

Wind direction 

Wind speed 

Corresponding periods 

1 
Factor l? 

(4=1) 

Factor 1 

(4* = 1) 
All directions 

Weak 

1, 4, 6, 9, 10 

OR 

Northern 

Strong 

8, 11 

2 3 

Factor 2? Factor 3? 

(4=2) (4=3) 

Factor 2 Factor 3 

(4* = 2) (4* = 3) 
SE SW 

Strong Strong 

57 2, 3, 12 
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meteorological regimes are defined as presented in 
Table 11. Regime 1 (factor 1) includes weak winds 
in all directions or strong northern winds; regime 
2 (factor 2) represents strong southeastern wind; 
and regime 3 (factor 3) is strong southwestern 
wind. It will be seen below that the concepts of 
‘zone’ and ‘regime’ are very helpful to understand 
the system. 

The core matrix 
The relationships among the factors can be 

seen in the core matrix G (Tables 7 and lo), where 

g iP4 indicates the importance of the combination 
of the corresponding factors from each mode. In 
this sense, the unrotated core matrix (Table 7) is 
extremely difficult to interpret. Because of the 
complex three dimensional multiplication, it is 
hard to discern the physical variations in the sys- 
tem. For instance, in regime 1, the local sources 
(Sl) appear to be totally dominant (gill = 40.1) 
such that the other sources are negligible. This 
result does not agree with the ‘physical model’ in 
which the regional coal sources (S2) also have 
made significant contributions to most sites in this 
regime (Table 2 or Fig. 3). The elements of the 
unrotated core matrix (Table 7) are apparently not 
well partitioned. In particular, it can be seen that 
the third mode cannot be directly associated with 
the defined meteorological regimes. 

The rotation significantly improves the ability 
to directly relate the results to the physical system. 
The varimax rotated core matrix (Table 10) can be 
interpreted using the concepts of ‘source’, ‘pollu- 
tion zone’, and ‘meteorological regime’. 

Under the regime 1, the influence of source 1 
on zone 1 is the most important (gi,, = 29.5). The 
effect of source 1 on zone 2 and source 2 on zone 
1 are also significant. Figure 3 is constructed 
based on the true mass contributions of the sources 
given in Table 2 averaged over the time periods 
and the sites that belong to the specific regimes 
and zones. Under regime 1, Fig. 3 shows that a 
large amount of particulate mass in zone 1 is 
contributed by source 1, and a significant amount 
by source 2. In zone 2, a significant contribution is 
from source 1. The information obtained from the 
core matrix is consistent with that shown in Fig. 3. 
It seems that the core matrix is related semi- 

REGIME 1 

@‘“‘I 

REGIME 2 

“SI Q sl SI Q 9 

9lRE 

REGINE 3 

SI Q D 

ma 
Fig. 3. The average contributions calculated from true values 
of corresponding sites and periods that belong to the specific 
zone and regime. 

quantitatively to the source contribution in terms 
of zones under a given regime. It is obvious (Figs. 
1 and 2) that long-range transport is not very 
important in weak wind conditions. The major 
contributors to all sites are the local sources (Sl). 
Since upper Ontario is assumed to be a clean area, 
no long-range transported particles arrive at the 
sites in strong northern wind conditions (periods 8 
and 11). Therefore, periods 8 and 11 have similar 
loadings to those of the weak wind periods (Table 
6) and they belong to one regime (Table 11). 

Under regime 2, the strong southeast wind de- 
creases the contributions of local sources (Sl), 

I312 = - 11.2 and g,,, = -5.6, and brings pollu- 
tants from the distant source (S2) and the smelter 
(S3) to zone 2, g,,, = - 5.9 and g,,, = - 9.0. Un- 
der regime 3, strong southwestern winds bring 
particles from the midwestem of the United States 
(S2) to zone 1, g,,, = 13.4, supplementing the 
local source effect observed for the other condi- 



w Chemometrics and Intelligent Laboratory Systems 248 

tions. Referring to regime 1 and 2 shown in Fig. 3, 
it can be seen that these results basically reflect 
the variation of the source contributions as they 
were defined in the simulated system. 

CONCLUSION 

The method of analyzing three-way chemical 
data sets with three-mode factor analysis (TMFA) 
has been explored using a simulated data set. 
Since the underlying physical model is known, it is 

possible to physically interpret the results of the 
TMFA, and thus further develop this methodol- 
ogy. This study begins the advance of TMFA 
from a purely statistical model to a statistical- 
physical model. In general, the three modes of the 
data set are associated with generalized ‘measured 
variable’, ‘position’, and ‘condition’. With TMFA, 

the data set can be decomposed into three two-way 
factor loading matrices and one three-way core 
matrix. This decomposition is based on simulta- 
neous variations of causal factors in the system. 
The factors in the mode corresponding to ‘mea- 

sured variable’ can be recognized as generalized 
‘sources’ (e.g. pollution sources, chemical species 

if measured variable is absorption spectrum, etc.); 
the factors in ‘position’ mode as generalized 
‘zones’ (e.g. pollution zones, concentration 
boundary layers, etc.); the factors in ‘condition’ 
mode as generalized ‘regime’ (e.g. wind condition, 
experimental conditions, etc.). In this way, the 
whole complicated physical system can be sum- 
marized by a few ‘sources’, ‘zones’, and ‘regimes’, 
and their relationships are shown in the core ma- 
trix. 

Axis rotation of the initially derived factor 
solution is a very important step to make the 
results more interpretable. Varimax rotation 
without row normalization has been selected as 
the best rotation method. Good agreement be- 
tween the TMFA model and the simulated physi- 
cal system is achieved by this rotation. Qualitative 
interpretation and semi-quantitative results are 
obtained by this TMFA method. The research to 
develop a quantitative model by incorporating 
TMFA with target transformation [2] is in pro- 
gress. 
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APPENDIX 

In practical applications, Tucker’s model [eq. 
(1) or (2)] is not exactly true unless all of the 
components are used (i.e. m = i, p =j, and 4 = k). 
As in conventional factor analysis, only a few of 
principal components in each mode are retained 

(m -C i, p <j, and q < k) in order to obtain a 
parsimonious model. Then an approximate solu- 

tion is obtained 

It is desireable to make iXc,k) approach ;XcjkJ 
in at least squares sense. However, Tucker’s proce- 
dures described in the theory section “do not 
produce a least squares approximation to the data” 
[6]. Kroonenberg and De Leeuw [15] developed an 
algorithm, TUCKALS3, that adopts an alternat- 

ing least squares (ALS) approach. TUCKALS3 
can provide least squares estimates of the parame- 
ters in the three-mode model. A outline of 
TUCKALS3 algorithm is given below without 
proof (see ref. 7 or 15 for details and proof). 

A mean-squared loss function, f, is defined as 

f(A,J&C,G)=IIX-XI]’ 

= IIX-AG(B’@CC’)I12 (A4 

The subscripts are omitted for simplicity unless 
the clarification is needed. A superscript t is then 
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needed for transpose of a matrix. The loss func- 
tion f will be minimized by searching for an 
approximate factorization X. For fixed A, B, and 
C, G can be estimated by eq. (9), 

G = A’X(B 8 C) 64.3) 

A new function, u, can be obtained by substitut- 
ing (A.3) into (A.2), 

u(A,B,C)= IlX-kll’ 

= 11X-AA’X(B@K)(B’8C’)l12 

= 11X-M’X(BB’sCC’)l12 (A.4) 

The problem is sequentially modified to search 
for only A, B, and C in such a way that the loss 
function u is minimized. Unfortunately, u is a 
function of the cross-product term of unknown A, 
B, and C, and it is not possible to solve such 
nonlinear problems explicitly to attain a minimum 
with ordinary methods. The ALS approach is used 
to solve this problem. With ALS, each set of 
parameters is estimated in turn by applying least 
squares procedures holding the other parameters 
fixed. After all sets have been estimated once, the 
procedure is repeated until convergence. 

To solve (A.4) with ALS, matrices A, B, and C 
are initialized to ‘A, ‘B, and ‘C, respectively (pre- 
superscripts indicate the iteration times). In prin- 

ciple, ‘A, ‘B and ‘C could be arbitrary, but use of 
the eigenvector matrices produced through 
Tucker’s method (see theory section) can optimize 
the whole procedure. A new ‘A is obtained by 
minimizing u [eq. (A.4)] with fixed ‘B and ‘C; a 
new ‘B is obtained with ‘C and the just computed 
‘A fixed; ‘C is produced with ‘A and ‘B. In 
general, the (n + 1)th main iteration step is de- 
scribed as follow. 

A substep 

“M=X(“B”B’@“C”C’)X’ with X=;Xcjk) 

(A-5) 

““A =“M”A(“A’“M2”A)-1/2 
(A-6) 

B substep 

“P=X(“C”C’e”+‘A”+‘A’)X’ with X=jXcki) 

(A-7) 

n+iB =.B”B(“B’“B2”B)-1/2 
(A-8) 

C substep 

“Q = X(“+iA”+iA’@,Z+i B”+‘B’)X’ 

with X = k Xcii) (A-9) 

n+lc =nQnC(nCrnQ2nC)-1/2 (A.lO) 

Eqs. (A.6), (A.8), and (A.lO) compute eigenvectors 
using the Bauer-Rutishauser method, which is 
more efficient for this case [6,15]. It has been 
shown [6,15] that the iteration will converge to- 
ward at least a local minimum u, so that a least 
squares solution will be obtained. 

The following relationships may be useful for 
examining the residuals of fitting. Eq. (A.2) or 
(A.4) can be rewritten as 

~‘(A,B,c)=CCC(~ijk-~;jk)~ 

=;&-~$r”:‘~ (A.ll) 
i J’ k 

This equation can be expressed with a conven- 
tional statistical notation, sum of squares (SS). 

SS(Res) = SS(Tota1) - SS(Fit) (A.12) 

where 

SS(Fit) = c c cg,?,,, (A.13) 
mPq 

For each mode, 

SS(Fit,) = CA,,,, SS(Fit,,) = ~EI.~, 
m 

SS(Fit uI) = c v4 

P 
(A.14) 

4 

where h,s, pPs, and v4s are the eigenvalues with 
the extent of the summation corresponding to the 
number of factors retained for each mode, respec- 
tively. SS(Fit ,) is an approximation of the amount 
of variation explained by the factors of a two-mode 
factor analysis on the first mode. SS(Fit,) is a 
function of retained number of factors in mode 1. 
SS(Fit I*) and SS(Fit ru) have analogous meanings. 
The relationship among them is 

SS(Fit) < min{SS(Fit,), SS(Fit,,), SS(Fitm)} 

< SS(Tota1) (A.15) 

The proofs of these relationships can be found 
in further technical references [7,15,16]. 
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