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Abstract--In the previous applications of eigenvector mathematical methods such as factor analysis, 
principal components analysis, and empirical orthogonal function analysis, the analysis has been made on a 
two-dimensional set of data. These data sets could be the chemical composition of a series of particle 
samples taken at a single location over time or the concentration of a single species measured over multiple 
locations at multiple times. However, there have not been methods previously available to examine a data 
set of chemical compositions measured at multiple sites over a series of sampling time intervals. Three-mode 
factor analysis permits the reduction of a three-dimensional data set into three two-dimensional matrices 
and a three-dimensional core matrix that presents how the system variance is partitioned among the three 
modes (chemical species, location and time). The technique will be illustrated with data from the SCENES 
program that is measuring particle compositions at a number of sites in the southwestern United States. 

Key word index: Source apportionment, three-mode matrix, empirical orthogonal function. 

INTRODUCTION 

Dispersion modeling and receptor modeling are two 
types of techniques used in air quality management. 
Dispersion models have been used in this field for a 
long time. For  dispersion modeling, it is necessary to 
obtain a survey of emissions over the studied area, 
collection of meteorological data, field tests to deter- 
mine the dispersion parameters, mechanistic studies 
on the chemical transformation and scavenging be- 
tween phases, as well as the studies of the models 
themselves. There are a number of difficulties associ- 
ated with these steps in dispersion modeling (Budian- 
sky, 1980; Gordon, 1980, 1988). Budiansky (1980) has 
discussed the problems of dispersion models, for ex- 
ample, the error in emission inventories, the uncer- 
tainty in the horizontal and vertical dispersion para- 
meters, low availability of complete information and 
high cost for complex models, etc. In addition, disper- 
sion models can only handle the sources that are 
known to contribute to the system. It cannot include 
the sources that are unknown or where lack of emis- 
sion data makes a source unmodelable. 

In the last two decades, receptor modeling has 
played a larger and larger role in air quality manage- 
ment. Receptor models, in contrast to dispersion 
models, utilize the data collected at receptor sites to 
elucidate information on properties and influence of 
emission sources. In typical receptor models, ambient 
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samples are analysed, yielding their chemical com- 
positions. These data can then be analysed so that the 
sources can be identified and their contributions to 
the collected sample mass can be estimated. This 
procedure is also called source apportionment. The 
estimates of the source contributions for an airshed 
are useful information in developing air pollution 
control strategies. 

A variety of receptor models have been developed. 
There have been several major review articles (Gor- 
don, 1980, 1988; Cooper and Watson, 1980), a number 
of symposium books (Macias and Hopke, 1981; Dart- 
her and Hopke, 1983; Pace, 1986; Watson, 1989), and 
two comprehensive books (Hopke, 1985, 1991) re- 
viewing and describing the principles and applications 
of these models. 

Air pollution systems are typically characterized by 
taking samples over time at a number of sampling 
sites. These samples are then characterized by a vari- 
ety of analytical methods so that the data set can be 
represented by a data block as illustrated in Fig. 1. We 
can use the terms "three-way data table", "three-way 
matrix" or "three-mode matrix" to refer to this kind of 
data set. Such a data set provides information on the 
simultaneous temporal and spatial variations in the 
system. However, conventional (two-mode) compon- 
ents analysis methods are really designed to analyse a 
data rectangle obtained by taking a slice of the block 
in one of the three orthogonal directions. For  factor 
and principal component analysis, this slice is typic- 
ally the measured concentrations at a single location 
over time. The empirical orthogonal function (EOF) 
approach analyses a single species concentration over 
sites and time (Peterson, 1970). One can also perform 
a spatial analysis of elemental concentrations over 
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Fig. 1. Typical structure of the data gathered for air 
quality management. 

sites for a single time interval. However, each of these 
methods is only looking at a single plane in the data 
block. 

There have been several applications of three-way 
principal components analysis to meteorological 
data. These data included barometric pressure, sur- 
face temperature and precipitation (Kutzbach, 1967) 
and sea surface temperature, sea level and wind field 
data (Barnett, 1981). The technique used in these 
studies is presented in detail by Preisendorfer (1988). 
However, these methods are designed to decompose 
the data into three two-way matrices that really do 
not provide a direct method for examining the parti- 
tioning of the system variance among the three differ- 
ent dimensions of the space. Thus, an alternative 
method that can provide the three-dimensional parti- 
tioning of the system variance may be helpful in 
identifying the processes that control the observed 
airborne particle compositions at a series of sites over 
time. 

This other three-way factor analysis method is cal- 
led three-mode factor analysis (TMFA) and was ori- 
ginally developed by Tucker (1963, 1964, 1966) and 
Kroonenberg (1983) to interpret educational psycho- 
logical data. Since then, many applications have ap- 
peared in the social science literature (Kroonenberg, 
1983). In these applications, there was no underlying 
physical model for the studied systems. Therefore, the 
interpretation of the results has only been presented in 
a statistical sense. Because of a lack of an underlying 
physical model, application of T M F A  in natural 
sciences has been very limited. Only a few appli- 
cations are found in the literature (Hohn, 1979; Hohn 
and Friberg, 1979; De Ligny et al., 1984; Spanjer et  al., 
1985). The model in these applications "is not  a phys- 
ical, but a mathematical-statistical model" (De Ligny 
et al., 1984). 

In very recent years, analysis of multi-way data 
became more popular in chemistry. Geladi (1989) 
provided a systematic overview of this area. Several 

three-way analysis methods have been used in analyt- 
ical chemistry and T M F A  is one of them. As Geladi 
(1989) commented on these methods, "many publi- 
cations in the scientific literature only go as far as the 
example problem". This problem can be called 
G L O G A  (General Lack Of Good Applications) prob- 
lem. G L O G A  and the failure to understand multi- 
mode mathematics hinder the common use and ac- 
ceptance of multi-way methods of data analysis. 
T F M A  is still not a clear model that natural scientists 
can meaningfully relate to their physical systems. 
However, it is an attractive method because it opens a 
new dimension to extract potentially more informa- 
tion from available data. Since this method works 
directly on the full three-way data matrix as its input, 
and thus can examine variations among all three 
modes simultaneously, it appears to be a technique 
that may be particularly useful in interpreting air- 
borne particle compositional data sets, and thus, ap- 
pears to warrant further investigation. 

In order to explore the application of TMFA to 
three-way air quality monitoring data and examine its 
interpretation in terms of the physical and chemical 
processes operating within an airshed system, meth- 
odological studies on simulated data with a known, 
well-defined structure have been performed (Zeng and 
Hopke, 1990). The studies were then extended to real 
data and the results are presented in this report. 

THEORY OF THREE-MODE FACTOR ANALYSIS 

The basic concept of TFMA is an extension of two-mode 
(conventional) factor analysis model to three-way data. Each 
mode corresponds to a class of variables. The term "mode" is 
used to mean a "set of indices by which data might be 
classified" (Tucker, 1966). Through TMFA, the data block is 
decomposed into three two-mode matrices (called factor 
weight matrices) and one three-mode matrix (called the core 
matrix). Figure 2 schematically presents this decomposition 
process. Similar to conventional factor analysis, most of the 
variations of measured variables are compressed into a few 
factors according to the covariance among the variables. The 
results can determine: (1) how many underlying causal fac- 
tors are controlling the system, (2) what relationships exist 
between the factors ,rod the variables, and (3) how much of 
the system variance is accounted for by the factors. 

The TMFA model is presented in terms of elements of the 
factor weight matrices, A, B and C, and the core matrix, Gnpq. 
The nomenclature for the complex mathematics of this 
method is described in the Appendix: 

n = l  p = l  q = l  

This model is often referred to as the Tucker-3 model. It can 
also be expressed in matrix form as a Kronecker product 
(Pease, 1"965): 

iX~ jk~ = iA~G~ ~ j(pBj (~ qCk). (2) 

The notational device that Tucker (1966) employed has been 
used here. The subscript (e.g. i) is used in several related, but 
distinct roles: (1) as a general identification of the mode, (2) as 
a subscript identifying the mode to which an element be- 
longs, and (3) as a variable identification symbol for the 
elements in the mode. The pre-subseript letter denotes the 
row mode while the post-subscript letter is the designation 
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Fig. 2. Outline of three-mode factor analysis model. 

for the column mode. Reversal of the subscripts indicates 
transposition, for example, ~An is the transpose of .Al. The 
matrix ~Xu~ ) is the three-mode data matrix rearranged as a 
two-mode matrix by sequentially placing all of the vertical 
planes that are parallel to the side planes of the three-mode 
matrix, side by side along the row direction (Fig. 3). The 
designation (jk) is called combination mode. The order (jk) 
may be read as "j-outer loop, k-inner loop". 

The Kronecker product of pB# and ~C~, denoted as 
pBj~qC~, yields en)I-Iu~ ). Then (n~I-lq~) can be repres- 
ented as below as a supermatrix containing suomatrices 
proportional to the matrix ~C~: 

(bl lqCk)  (bl2qCt)  " ' "  

(b21qCk) (b22qCk) . . .  

(pq)H(jk) = pBj ~ ¢Ck . . . .  (3) 

Using these definitions and notation, the three-mode prob- 
lem is reduced to a two-mode problem as in Fig. 3. Tucker 
(1966) showed that the matrices ~A., iBp and ~Cq in Equa- 
tion (2) could be obtained from the matrices iMt, jPj and 
kQk. These latter matrices are analogous to covariance 
matrices in conventional factor analysis. 

~M~=iXu~)X/ 

je  j= jX(ik)X j (4) 

kQ~ =~X(u)Xk. 

After the eigenvalues and eigenvectors of each of the 
covariance matrices are computed, the factor weight matrices 
iA., jBp and kC¢ can be obtained in this way: N significant 
eigenvectors from ~M~ constitute ~A~; P significant eigenvee- 
tors from ~P~ constitute ~Bp; and Q significant eigeavectors 
from ~Q~ constitute ~C¢. 

The core matrix nC(pq~ is given by 
_ + + , G ( ~ ) - , A  i X(j~)(jBp (~) kC+), (5) 

where 
.A + =(nAiA.)- 1 ~A i 

,B + =(pBjB,) -~ pBj (6) 

~C~ =(~C~C~)-lqCk. 

Since matrices A, B and C are column-wise orthonormal (a 
property of the eigenvectors): 

.AiAn=.I., pBjBp=,Ip, qCkCo=~I ¢. (7) 

Then 

.A+=.A, ,  ,B /  =pSj, ¢C~ =qC k. (8) 

Equation (5) becomes 

.G(,q) = .  A, Xuk)(~B p Q ~C¢). (9) 

In principle, all of the system information is contained in 
the three factor weight matrices (A, B and C) and the core 
matrix (G.p¢) in terms of the factors that give rise to the 
system variation. As in conventional factor analysis, each 
weight matrix (e,g. iAn) will show the relationship between 
the variables (i) and factors (n) in that mode. The squares of 
the elements in the core matrix are an indication of how 
much the system variance is accounted for by the corres- 
ponding three-way combination of factors (n, p and q ) from 
each mode. This relationship can be seen from the following 
equation: 

ZZE ~,~,--EZZ g~,,. (10) 
1 j k n p q 

In conventional factor analysis, a rotation is usually nee- 
ded before interpreting the results. Tucker (1966) also pro: 
sented a transformation scheme. Let the matrices .T.., pTp. 
and qT¢. be square, non-singular matrices, and let 

IA,T~. =iA.. 

~BpT~, =~Bp. (11) 

~CqTq.=kCq.. 

The n*, p* and q* stand for transformed modes. For core 
matrix: 

,~G(p~)=(,Tb)-l,G(pq)[(p.Tp) -1Q (q.Tq)- 1]. (12) 

In transformed form, Equation (2) becomes 

iX(j~) = iAn.G(.q.)( . B j  Q q.Ck). (13) 

In terms of algorithms, there are several approaches other 
than the method described above to perform TMFA. Kroon- 
enberg (1983) presented these approaches, particularly, an 
alternating least squares algorithm (TUCKALS3, see Ap- 
pendix A in Zeng and Hopke, 1990). The alternating least- 
squares algorithm was used in these studies. 
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METHODOLOGICAL STUDIES WITH SIMULATED DATA 

SETS 

In applying TMFA to the receptor modeling, it is 
desirable to relate not only statistically, but phys- 
ically, the TMFA model to the actual physical system. 
In order to examine these relationships and develop 
the TMFA method as a receptor model, it is extremely 
useful to employ a simulated data set with a known 
underlying structure. These studies have been re- 
ported by Zeng and Hopke (1990). Studies without 
rotation have shown some applicability of TMFA in 
receptor modeling. It could identify sources, classify 
sites as pollution zones, group periods into primary 
meteorological regimes, and indicate the contribu- 
tions of the combinations of factors from three modes. 
However, some aspects of the results are difficult to 
interpret. 

These results suggest the need for a rotation of the 
abstract factor matrices to achieve a kind of "simple 
structure" as in conventional factor analysis (Hopke 
et al., 1976). The rotated results should be more 
interpretable. Axis rotation of the initially derived 
factor solution is a very important step to make the 
results more interpretable. Varimax rotation without 
row normalization has been selected as the best 
rotation method. Good agreement between the 
TMFA model and the simulated physical system was 
achieved by this rotation. 

The application of TMFA as a receptor model was 
tentatively established with the analysis of these simu- 
lated data sets. It is a qualitative model like conven- 
tional two-mode factor analysis, but works with 
three-way data. In general, the three modes of a data 
set are associated with measured species, sampling 
sites and periods. With TMFA, the data set can be 
decomposed into three two-way factor weight matri- 
ces and one three-way core matrix. This decomposi- 
tion is based on simultaneous variations of causal 
factors in the system. The factors in the mode corres- 
ponding to species can be recognized as pollution 
sources. Thus, the presence of several elements known 
to be emitted by a particular source type would 
permit the identification of that source type as a 
contributor to the variation observed in the elemental 
compositions of the collected particle samples. The 
factors in site mode denote zones in which similar 
sources or processes dominate the observed elemental 
variations. The factors in time period mode appear to 
be related to the meteorological causes of variation. In 
this way, the whole complicated pollution system can 
be summarized by a few of "sources", "zones" and 
"regimes", and their relationships are shown in the 
core matrix. 

APPLICATION OF THREE-MODE ANALYSIS TO SCENES 

DATA 

In this section, TMFA is applied to a real data set 
from SCENES (McDade and Tombach, 1986) data- 

base. SCENES is a large sampling and analysis pro- 
gram that has yielded a large atmospheric environ- 
mental database. Its sampling network covers the 
region where California, Nevada, Arizona and Utah 
intersect one another (Fig. 4). The data residing in the 
database include the chemical compositions of two 
size fractions of particles, visibility measurements, 
meteorological measurements and gaseous air pollu- 
tant measurements. The chemical composition data of 
particles are suitable to TMFA application. Since the 
total particulate matter samples (2.5pm~<aero- 
dynamic dia. ~< 15 pm) have more chance to be influ- 
enced by a number of local sources while the fine 
particulate samples (<2.5#m aerodynamic dia.) 
should have sources distributed over the whole re- 
gion, the fine particulate matter data are used in this 
study. 

The samples were collected on Teflon and quartz 
filters and analysed using established methods: X-ray 
fluorescence (XRF) for trace elements, thermal ex- 
traction for carbonaceous materials (organic and ele- 
mental carbon), and ion chromatography for ions 
(sulfate, nitrate and ammonium). The ionic species 
data are not available at most of the sites. The concen- 
tration of some elements are always near the filter 
blank values. These data are not used in this study. 
Eighteen species are included in the analysis. They are 
AI, Si, P, S, CI, K, Ca, Ti, V, Mn, Fe, Cu, Zn, Br, Cd, 
Pb, ROC (residual organic carbon) and EC (elemental 
carbon). 

There are 11 observation sites (Table 1). Aerosol 
samples were collected at seven of them. The site MC 
(see Fig. 4) has very limited data so that six sites (BY, 
GC, HI, HP, MV and SM) are included. The data 
used are for 24-h samples collected every day. These 
data are available from March 1986 to February 1987. 
In order to get a complete three-way data set, the 
sampling periods (dates) were selected such that all six 
sites have valid data within common time periods. 
Using this criterion, 46 periods were selected. There- 
fore, the three-way data matrix is 18 (species)x6 
(sites) × 46 (periods). Screening the data found that the 
Si concentration at site SM on 2 April 1986 is unusu- 
ally high (2 orders of magnitude higher than the most 
of the samples). It is considered as an outlier. This 
sampling period was removed. The final data matrix is 
then 18 (species) x 6 (sites) × 45 (periods). 

The data matrix was analysed with each element 
centered to its mean value and scaled by elemental 
variance. Thus, each standardized elemental concen- 
tration has a zero mean and unit variance (R-mode), 
i.e. equivalent to standard two-mode factor analysis. 
Other scaling methods had been examined in our 
studies of simulated data and it was found that this 
approach to scaling provided a model that could be 
readily interpreted in terms of the system under study 
(Zeng, 1989). The fitting and residual data (Table 2) do 
not show the number of factors in each mode as 
clearly as in the simulation case. Since three factors 
give a better fit [SS(Fit3)=84%] than two factors 
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Table 1. SCENES observatories and types of aerosol samples collected 

Site designation Map description Aerosol* 

HI Hillside, AZ TP, FP 
MC Meteor Crater, AZ TP, FP 
TM Turquoise Mountain, CA 
SM Spirit Mountain, NV TP, FP; 
MV Mead View, NV TP, FP; 
LM Lake Mead, NV 
HP Hopi Point, AZ TP, FP; 
DV Desert View, AZ 
GC Glen Canyon, AZ TP, FP; 
BY Bryce Canyon, UT TP, FP; 
YP Yovimpa Point, UT 

PM-IO (HV) 
PM-IO (HV) 

CP, FP (SFU) 

CP, FP 
CP, FP (SFU) 

*TP = Total ( < 15 am AD) particulate matter, FP = fine ( < 2.5/zm AD) partic- 
ulate matter, CF = coarse ( > 2.5/zm AD) particulate matter, SFU = stacked filter 
units. 

Table 2. Sum of squares of fitting (SS) in three modes of the 
SCENES data set 

Test for mode 1 Test for mode 2 Test for mode 3 
N SS(Fitl) P SS(Fit2) Q SS(Fit3) 

1 0.44 1 0.56 1 0.39 
2 0.60 2 0.72 2 0.48 
3 0.68 3 0.84 3 0.59 
4 0.74 4 0.90 4 0.65 
5 0.79 5 0.96 5 0.70 
6 0.84 6 1.00 6 0.74 
7 0.87 7 0.77 

and  reflect the main  feature of the sites (see discussion 
below), three factors are retained in mode  2. By exam- 
ining the explained variance (rotated core matrix) 
with different numbers  of factors, four and  five factors 
are retained for mode 1 and  mode  3, respectively. The 
SS(Fit) is 63% and SS(Res idua l )=37%.  Thus, un- 
explained system variance in this analysis is 37% of 
total  system variance (also see discussion and  Fig. 5 

later in this section). The  unexplained por t ion  consists 
of possible unique factors (Harman,  1976; Hopke,  
1985) and  noise. 

Table  3 presents the Varimax rota ted factor weights 
for mode  1 of the SCENES fine part iculate data  set. 
The factor 1 has large weights of crustal  elements (A1, 
Si, Ca, Ti, M n  and  Fe). It is identified as soil. The 
weights look smaller than  factor loadings in usual 
two-mode factor analysis, but  they indicate the exist- 
ence of s t rong relationships. The in terpre ta t ion of the 
T M F A  results is primari ly based on (1) the factor 
weight (e.g. ai,) being the fraction of the factor (n) on 
the variable (0; (2) the square  of an  element in the core 
matrix,  g~p~, being a measure of the system variance 
accounted for by the three-way combina t ion  of factors 
n, p and  q. The  in terpre ta t ion  of three-mode factor 
weights is similar to, bu t  not  exactly the same as tha t  
of two-mode factor loadings. In two-mode factor ana-  
lysis, factor loadings are derived from the eigenvectors 
by 

a i ,  = v i ,  " x / ~ , ,  (14) 

Table 3. Varimax rotated factor weights of mode 1 of the SCENES data set 

Factor 1 Factor 2 Factor 3 Factor 4 
i Species (source 1) (source 2) (source 3) (source 4) 

1 AI 0.390 0.013 0,004 0.018 
2 Si 0.400 - 0.028 - 0.033 0.009 
3 P 0.034 0.470 0.088 0.040 
4 S - 0.044 0.519 0.114 0.077 
5 C1 - 0.063 - 0.080 - 0.713 0.042 
6 K 0.099 0,046 - 0.570 0.043 
7 Ca 0.364 - 0.059 - 0.012 0.058 
8 Ti 0.398 - 0.021 0.002 0,012 
9 V 0.249 0.125 0.013 - 0.025 

10 Mn 0.372 0.023 0.130 - 0.050 
I l Fe 0.401 - 0.030 - 0.018 0.014 
12 Cu - 0.006 - 0.026 0.041 - 0.883 
13 Zn - 0.050 0.258 0.052 0.175 
14 Br 0.124 0.242 - 0.180 - 0.026 
15 Cd 0.012 - 0.042 0.084 - 0.184 
1 6  P b  - 0,030 0.411 0.048 0.007 
17 ROC - 0.014 0.351 - 0.220 - 0.099 
18 EC 0.026 0.244 - 0.185 - 0.357 
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where % = the ith element of the nth eigenvector; 
~, = the nth eigenvalue. 

It can be shown (Harman, 1976) that this two-way 
factor loading a~, (or the one that has been subjected 
to an orthogonal rotation) is the correlation coeffi- 
cient between variable i and factor n. In TMFA, 
however, the factor weight is simply the eigenvector 
itself, i.e. 

ai, = %. (15) 

Therefore, the weight is not the correlation coefficient 
although it still shows the relationship between the 
factor n and the variable i (Kroonenberg, 1983). 

Another point needs to be noted. Since the weights 
in TMFA are simply the eigenvectors, their sum of the 
squared values for each factor is equal to 1. Therefore, 
the large loadings commonly observed in the two- 
mode ease (e.g. values of 0.8 or 0.9) should not be 
expected if three or more variables are associated with 
the factor. The weights need to be examined in a 
relative sense rather than as absolute correlation coef- 
ficients with possible maximum values of 1. 

Factor 2 is associated with S, P, Pb, ROC, EC, Zn 
and Br. This factor is attributed to be a general urban 
area source, mainly autoemission along with the SO2 
converted to sulfate by photochemical oxidants in the 
transport process. The weight of P is likely due to the 
peak P X-ray being interfered with by the large S peak 
in XRF analysis. Factor 3 is assigned to vegetative 
combustion aerosol since it contains CI, K, ROC and 
EC, It is not clear why Br would also be associated 
with this factor. Factor 4 is a Cu source with a 
medium weight for EC. It could be the copper smel- 
ters in southern Arizona or the contamination from 
the motor brushes of the sampler (Gordon, 1980) if 
care has not been taken to vent the pump exhaust well 
away from the samplers. Since the samplers used in 

the SCENES program were protected from contam- 
ination of the motor brushes, this factor is considered 
to be the copper smelters. 

The results are compared with that of two-mode 
factor analyses individually performed for each site 
(each lateral slice of the three-way matrix). The two- 
mode analysis results are summarized in Table 4. All 
four sources discussed above are also identified by the 
two-mode analyses. In two-mode analysis, more small 
sources show up and some of them seem to be from 
breaking down of the sources considered as the urban 
source in TMFA. In general, the results of two-mode 
and three-mode agree well, but TMFA covers more 
common variations in the whole region and two- 
mode analyses reveal more details of the local vari- 
ations. 

Table 5 gives factor weights of mode 2 of the three- 
way data set. It is quite clear that site HI forms a zone 
by itself. This site is about 100 miles south of the 
Grand Canyon National Park and about 100 miles 
northwest of the Phoenix urban area (see Fig'. 4). 
Another site SM near the edge of the park and reser- 
vation area in the southern California side, represents 
another zone that is polluted differently. The other 
four sites (BY, HP, GC and MV) belong to a relatively 
cleaner zone. The sites MV and GC also have small 
weights on factor 1, which is a pollution zone re- 
presented by site SM. From Fig. 4, it can be seen that 
MV is close to SM and there is a coal-fired power 
plant near GC. These weights reflect the configuration 
of the sources and the sites. If one more factor is taken 
in this mode, sites MV and GC are separated from BY 
and HP (Table 5). However, it does not seem neces- 
sary to separate them in this six-variable mode. The 
sites are then grouped into three zones. 

The factor weights of mode 3 are presented in Table 
6 along with the corresponding sampling periods. The 

Table 4. Summary of two-mode factor analysis for the SCENES data set 

Site Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

BY Si, A1, Fe, S, P, Br, Zn, Cu Cd, Pb C1, K, EC, V, EC, Mn 
Ti, Ca, K, Pb, ROC, ROC 

EC 
(soil) (marine) 

GC Si, AI, Fe, EC, ROC, Cu CI, K Pb S, P Cd V 
Ti, Ca, K Zn, Br 
(soil) (marine) 

HI Si, A1, Fe, Cu, Pb, Zn, Br, ROC, Cd V CI, K, EC S, P 
Ti, Ca S, P, ROC, EC, K 

EC 
(soil) (marine) 

HP Si, A1, Fe, S, P, Pb Cd Zn CI, K ROC, EC, V 
Ti, Ca, K (marine) Br 
(soil) 

MV Si, A1, Fe, EC, ROC, CI, K Cd Cu S, P 
Ti, Ca, V, K Zn 
(soil) (marine) 

SM Si, A1, Fe, S, P, Pb, Cd Cu Zn CI, K, Br EC, ROC, 
Ti, Ca, K, Br Br 
V, Mn 
(soil) (marine) 



1708 Y. ZENG a n d  P. K. HOPKE 

Tab le  5. V a r i m a x  r o t a t e d  f ac to r  weights  o f  m o d e  2 in the S C E N E S  d a t a  set 

If  th ree  fac tors  are  r e t a ined  If four  fac tors  a re  r e t a ined  

F a c t o r  1 F a c t o r  2 F a c t o r  3 
j Site (zone 1) (zone 2) (zone 3) F a c t o r  1 F a c t o r  2 F a c t o r  3 F a c t o r  4 

1 BY - 0.162 0.111 0.714 - 0.071 - 0.093 0.756 0.030 
2 G C  0.230 - 0 .022 0.348 - 0.053 - 0 .019 - 0 .010 0.756 
3 HI  - 0.019 - 0 .982 - 0.021 - 0 .010 0.988 - 0.008 0.001 
4 H P  - 0.003 - 0.133 0.511 0.089 0.118 0.654 - 0.043 
5 M V  0.305 - 0 .069 0 .320 0.074 0.033 0.020 0.653 
6 S M  0.910 0.027 - 0 .067 0.989 - 0 .010 - 0 .006 - 0.003 

m o s t  s i g n i f i c a n t  w e i g h t s  a r e  i n  b o l d f a c e .  S i n c e  t h e r e  

a r e  4 5  p e r i o d s ,  t h e  w e i g h t s  a r e  r e l a t i v e l y  s m a l l .  

W e i g h t s  l a r g e r  t h a n  0 .3  m a y  b e  c o n s i d e r e d  t o  b e  

s i g n i f i c a n t .  T h e  i n t e r p r e t a t i o n  o f  t h i s  m o d e  is d i f f i c u l t  

b e c a u s e  o f  l a c k  o f  r e l a t e d  i n f o r m a t i o n .  E a c h  f a c t o r  

r e p r e s e n t s  a p a r t i c u l a r  r e g i m e .  T h e  r e g i m e s  c o u l d  b e  

c h a r a c t e r i z e d  b y  m e t e o r o l o g i c a l  c o n d i t i o n s  ( w i n d  d i r -  

e c t i o n  a n d  s p e e d ,  t e m p e r a t u r e ,  i n v e r s i o n ,  e tc) ,  o r  e m i s -  

s i o n  e v e n t s .  T h e s e  c o n d i t i o n s  o r  e v e n t s  c a n  b e  r e l a t e d  

t o  t h e  r e g i m e  ( t h e  f a c t o r )  b y  t h e  s a m p l i n g  p e r i o d s .  F o r  

Tab le  6. V a r i m a x  r o t a t e d  f ac to r  weights  of  m o d e  3 in the S C E N E S  d a t a  set 

S a m p l i n g  F a c t o r  1 F a c t o r  2 F a c t o r  3 F a c t o r  4 F a c t o r  5 
k da te  (regime 1) ( regime 2) ( regime 3) ( regime 4) ( regime 5) 

1 14/04/86 0.029 0 .280 0.009 O. 110 0.091 
2 17/04/86 O. 109 0.233 - 0 .030 - 0 .046 0.015 
3 20/04/86  O. 124 O. 144 0.088 - 0 .014 - 0 .086 
4 23/04/86  0.031 - 0 .025 - 0 .002 0.078 0.067 
5 05/05/86  0.276 0.239 0.007 - 0 .050 - 0 .022 
6 08/05/86  0.041 0.274 0.057 - 0 .040 O. 130 
7 14/05/86 O. 146 - O. 157 0.007 O. 108 0.065 
8 17/05/86 0.010 - 0.065 0.078 - 0.022 - 0.008 
9 20/05/86  0.033 - 0.233 0.012 0.325 0. I 34 

10 23/05/86  0.395 - 0.007 - 0 .008 0.118 0.013 
11 29/05/86  0 .306 - 0.015 - 0.075 0 .319 0.293 
12 07 /06 /86  - 0 .055 0.014 0.019 0 .810 - 0.031 
13 04/07/86  0.037 - 0.311 0.038 0.011 - 0 .126 
14 07/07/86  - 0.003 0.184 0.081 - 0 .007 0.012 
15 10/07/86 0.041 - 0.048 0.077 0.076 - 0 .050 
16 13/07/86 0.591 0.069 - 0.008 - 0.111 - 0.045 
17 19/07/86 - 0 .010 - 0.073 0.086 0.006 - 0 .042 
18 18/08/86 - 0 .044 - 0.155 0.077 - 0.002 0.001 
19 21/08/86  0.450 - 0.219 0.159 - 0.129 0.030 
20 30/08/86  0.057 - 0.228 0.015 0.109 0.109 
21 02 /09 /86  0.001 0.032 0.019 - 0.001 0.162 
22 05 /09 /86  0.021 0.050 0.075 0.011 0.201 
23 08/09/86  0.004 - 0 .220 - 0.032 -- 0 .114 0.165 
24 11/09/86 - 0.003 0.077 0.032 0.027 0.059 
25 14/09/86 0.021 0.004 0.119 0.035 0.043 
26 17/09/86 - 0.013 0.089 0.051 0.022 0.079 
27 20/09/86  0.016 - 0 .050 0.065 0.005 0.031 
28 23/09/86  - 0.032 0.234 0.110 - 0 .014 0.062 
29 26/09/86  - 0.027 - 0 .040 0.121 0.002 0.020 
30 08/10/86  - 0.035 - 0.071 0.020 - 0.097 0.279 
31 29/10/86  0.008 - 0 .204 0.016 -- 0.055 0.362 
32 10/11/86 - 0.052 0.153 0.118 - - 0 . 0 1 2  0.121 
33 04/11/86  - 0.067 - 0.121 0 .370 - 0.002 - 0.045 
34 07/11/86  0.049 0.006 0.653 0.024 - 0.025 
35 10/11/86 - 0 .014 0.052 0.457 0.020 -- 0 .034 
36 13/11/86 - 0.029 0.139 - 0.111 - 0.027 0 .500 
37 16/11/86 - 0.003 - 0.008 0.014 - 0 .060 0.305 
38 22/11/86  - 0.048 0.269 0.055 0.024 0.119 
39 13/12/86 - 0.055 0.092 0.134 -- 0 .006 0.079 
40 16/12/86 - 0 .096 - 0 .149 0.094 - 0.013 0.110 
41 19/12/86 - 0.085 - 0.135 0.028 - 0.053 0.258 
42 22/12/86  - 0.072 - 0.025 0.072 -- 0 .044 0.164 
43 25/12/86  0.078 0.024 0.107 - 0 .014 0.069 
44 28/12/86  - 0.079 0.000 0.088 - 0.012 0.074 
45 31/12/86 - 0.065 0.102 0.116 - 0.007 0.039 
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example,  factor 1 represents  a regime whose typical 
cases occurred on  13/7/86, 21/8/86, 23/5/86, 29/5/86, 
etc. A survey of ma jo r  emission events, meteorological  
da ta  or air  parcel trajectories may  lead to the charac-  
ter izat ion of this regime. It  is ant ic ipated that  these 
regimes could be character ized once the related da ta  
become available. Presently,  they will be t reated as 
vir tual  regimes to discuss the rest of the results. 

The  core mat r ix  is listed in Table  7. The  four largest 
entries in the core matr ix  are g u , ,  ga24, g232 and  
g131. They indicate tha t  the most  impor t an t  events 
are: (1) pol lu t ion by soil (source 1) at  zone 1 in the 
periods of regime 1, (2) pol lu t ion by mar ine  (source 3) 
at  zone 2 in regime 4, (3) pol lu t ion by u rban  (source 2) 
at  zone 3 in regime 2, and  (4) pol lu t ion by soil at  zone 
3 in regime 1. 

The  results may  be examined zone by zone. In zone 
1 (SM site), the largest con t r ibu to r  is the soil source 
(source 1). The  u r b a n  (source 2) and  Cu (source 4) 
sources also play significant roles. Fo r  zone 2 (HI site), 
the mar ine  source (source 3) becomes impor tan t ,  par-  
t icularly in regime 4. Ano the r  significant source in this  
zone is the u r b a n  source (in regimes 5 and  2). The  soil 
and  u r b a n  sources show influence on  zone 3 (BY, HP,  
G C  and  MV). If  the core is examined regime by 
regime, it can be seen that ,  in general, the regime 1 
represents  favorable condi t ions  for the soil source to 
domina te  and  regime 2 for dominance  by the u r b a n  
source. 

An al ternat ive presenta t ion  can be helpful in the 
in terpre ta t ion  of the core matrix.  The  square  of each 

entry of the core represents the system variance ex- 
plained by the cor responding  combinat ion .  The rat io  
of the square  to the total  system variance [SS(Total)]  
can give the percentage of the variance explained by 
the combinat ion .  Summat ion  of these percentages 
over  two index series (two modes) will give the ex- 
plained variance by factors in the th i rd  mode. The 
results are shown in Fig. 5. 

In terms of source contr ibut ions ,  soil is a major  
source (Fig. 5). I t  contr ibutes  30.6% of the system 
variance. It  should  be noted  tha t  the variance is no t  
equivalent  to mass contr ibut ion.  A source cont r ibut -  
ing a large a m o u n t  of system variance does not  neces- 
sarily cont r ibute  a large a m o u n t  of mass to the sample 
because the original  da ta  matr ix  is based on  species 
(system variance is based on  species) and  the composi-  
t ion of the source will affect its con t r ibu t ion  to the  
system variance. The second largest con t r ibu to r  is the 

urb~ 

marine 

unexplained 

By sources 

Table 7. Varimax rotated core matrix of SCENES data set 

p * = l  p * = 2  p * = 3  
(zone 1) (zone 2) (zone 3) 

q* = 1 (regime 1) 
m* = 1 (source 1) 26.63 - 6.80 15.65 
m* = 2 (source 2) 8.50 - 2.44 0.19 
m* = 3 (source 3) - 5.40 4.57 - 0.98 
m* = 4 (source 4) - 1.03 - 0.22 1.48 

q* = 2 (regime 2) 
m* = 1 (source 1) - 5.54 0.12 - 7.15 
m* = 2 (source 2) - 12.60 9.40 - 16.38 
m* = 3 (source 3) 2.34 - 0.99 1.60 
m* = 4 (source 4) 3.02 - 0.35 0.71 

q* = 3 (regime 3) 
m* = 1 (source 1) - 3.06 6.94 - 7.71 
m* = 2 (source 2) - 3.33 5.24 - 7.02 
m* = 3 (source 3) 1.26 - 1.90 3.46 
m* = 4 (source 4) - 12.35 - 2.18 2.82 

q* = 4 (regime 4) 
m* = 1 (source 1) 9.16 - 0.58 11.83 
m* = 2 (source 2) 3.65 - 1.09 0.17 
m* = 3 (source 3) - 3.25 18.11 - 7.61 
m* = 4 (source 4) - 0.82 0.01 0.41 

q* = 5 (regime 5) 
m* = 1 (source 1) - 0.72 5.02 - 6.22 
m* = 2 (source 2) 5.08 - 13.06 - 2.48 
m* = 3 (source 3) 0.39 1.60 3.23 
m* = 4 (source 4) - 1.68 1.51 1.67 

ZO-- "~ 

zone 

unexplained 

By zones 

regime 2 
regime 'ime 1 

regime 4 

regime 
unexplained 

By regimes 

Fig. 5. The system variance explained by the factors in 
the SCENES data set. 
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urban source, and the third is the marine source. The 
Cu source is not important  to system variance be- 
cause it only involves a single element. 

The three zones could be compared. Figure 5 indic- 
ates that zone 1 receives the largest particle weight 
(the particles are predominantly soil particles). The 
other two zones have lower weights. Among the five 
regimes, regime 1 is the most important  one (23.3% 
variance). Regimes 2 and 4 include about  13% of 
variance each. Regimes 3 and 5 only contribute 8 and 
6%, respectively. 

C O N C L U S I O N S  

The T M F A  method has been developed for re- 
ceptor modeling purpose, and its application to a real 
data set shows good initial results. Like two-mode 
factor analysis, T M F A  is a qualitative method. It can 
be used to find those factors that cause variations of 
the observed values in a three-way data set. A large 
data set can be explained by a few of these principal 
factors. The method provides not only the informa- 
tion of possible particle sources, but also indications 
of the interactions between the sources and spatial 
and temporal domains. This latter function is the 
main feature of three-mode analysis that two-mode 
factor analysis does not possess. 

In the interpretation of TMFA,  three factor weight 
matrices are used to identify respectively the nature of 
the factors, and the entries of the core matrix show the 
explained system variance. It should be noted that the 
weights are not scaled by the corresponding square 
root of the eigenvalue, so that their values are usually 
lower than those commonly observed in two-mode 
analyses, particularly when more variables are associ- 
ated with a factor. A Varimax rotation is a necessary 
step to obtain interpretable results. Another concept 
that should not be misunderstood is that the ex- 
plained variance in general is not equivalent to source 
contribution to the ambient aerosol mass. 

In the application of T M F A  to the SCENES data 
set, four sources were identified. They are soil, urban 
dust, vegetative combustion aerosol and a Cu source. 
The first three sources are major sources. The region 
of interest is divided into three zones according to the 
manner in which the various sources contributed to 
the observed aerosol compositions. Zone 1 (SM), 
which is closer to southern California, is highly pollu- 
ted compared with the other two zones. Five factors 
were extracted from the third mode. However, these 
factors were not characterized because of lack of 
related information (meteorology or  emission events). 
Thus, the interpretation was not complete. 
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APPENDIX 
NOMENCLATURE AND LIST OF SYMBOLS 

and a Kronecker product, respectively. The sign {variable} 
means a collection of the variables (e.g. {x~} is a collection of 
vectors x~). The term "average" or "mean" is used for arith- 
metic mean. 

Symbols 

A 

B 

C 

D 

F 

i 
I 

I 
J 
J 

k 
K 

Nomenclature 

The term "mode" or "way" denotes a set of indices by 
which data might be classified. A data set with two sets of 
indices is called two-mode or two-way data, and it can be 
presented as a regular matrix (i.e. two-mode matrix). Bold- massj 
face capital letters with subscripts represent generalized n 
matrices including regular two-mode matrices and any mul- n* 
timode (multi-way) matrices. The number of the subscripts N 
reflect the number of modes of the matrices. The subscripts p 
are generally omitted if the matrices are two-mode. For p* 
example, both A~j and A can be used for same two-mode q 
matrix; Xok represents a three-mode matrix. A subscript is q* 
used in several related, but distinct roles: (1) as a general R 
identification of the mode, (2) as a subscript identifying the s, 
mode to which an element belongs, and (3) as a variable T 
identification symbol for the elements in the mode. As a TMFA 
element subscript, i may have a value from 1 to 1 (upper case U 
of the same letter as the subscript stands for the upper limit). 
In some circumstances, a multi-mode matrix can be unfolded x, x, X, Xt~ 
to a two-dimensional matrix. The subscripts can be split into 
a pre-subscript and a post-subscript to reflect this unfolded xl 
arrangement. The pre-subscript associates with the row ear- x~ 
iables and the post-subscript reflects the column variables. 
For instance, X~j k is a three-mode matrix, tX(lk) is the three- xij~ 
mode matrix unfolded as a two-dimensional I by ( J  × K) 
matrix. The transpose of iXo~ ) then can be represented by y, Y 
(jk)Xi. This notation can also be used for two-mode matrix y~, 
so that both A r and jAi can be used for the transpose of iAj. 
A- 1 stands for the inverse of A. Boldface lower-case letters z, z, Z, Z,j k 
represent column vectors, e.g. x, and their transpose for row 
vectors, x r. For a matrix X, xj is its jth column vector. 
Similarly, X i or Xj or X k could be the ith or jth or kth slice z,j h 
(two-mode matrix) taken from the three-mode matrix X~j k 
along the first or the second or the third mode of the matrix, e, e, E, Eo~ 
The xi, x~j and xok denote the elements of the vector x, the 
two-mode matrix X~j and the three-mode matrix X~, re- A 
spectively. The signs ® ~ / ~/ Q represent an outer product 

factor loading matrix in two-mode analysis; 
factor loading matrix of mode 1 in three-mode 
analysis 
rotated factor loading matrix in two-mode 
analysis 
factor loading matrix of mode 2 in three-mode 
analysis 
factor loading matrix of mode 3 in three-mode 
analysis 
observed data matrix standardized to a mean 
of zero and a variance of one 
factor score matrix in two-mode analysis 
rotated factor score matrix 
core matrix in three-mode analysis 
index for mode 1; index for species 
number of variables in mode 1; number of 
species 
identity matrix 
index for mode 2; index for sampling site 
number of variables in mode 2; number of 
sampling sites 
index for mode 3; index for sampling period 
number of variables in mode 3; number of 
sampling periods 
total mass of sample j 
index for factors; index for sources 
index for rotated factors in mode 1 
number of sources; number of factors 
index for factors in mode 2 
index for rotated factors in mode 2 
index for factors in mode 3 
index for rotated factors in mode 3 
correlation matrix 
scaling coefficient for source (factor) n 
transformation matrix 
three-mode factor analysis 
eigenvector matrix (its columns are eigen- 
vectors) 
observed ambient data in scalar, vector, two- 
way matrix or three-way matrix form 
ambient concentration of species i 
concentration of species i in the ambient 
sample collected at site J 
concentration of species i in the ambient 
sample collected at site j in period k 
source profile or source profile matrix 
source profile, i.e. concentration of species i in 
the particles coming from source n 
mass contribution of sources to samples in 
scalar, vector, two-way matrix or three-way 
matrix form 
mass contribution of source n to the sample 
collected at site j in period k 
model error terms for corresponding dimen- 
sional models 
diagonal matrix with diagonal elements being 
eigenvalues 

AE(A) 26:9-K 


