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RANK-ONE APPROXIMATION TO HIGH ORDER TENSORS"*
TONG ZHANG! AND GENE H. GOLUB!

Abstract. The singular value decomposition (SVD) has been extensively used in engineering
and statistical applications. This method was originally discovered by Eckart and Young in [Psy-
chometrika, 1 (1936), pp. 211-218], where they considered the problem of low-rank approximation to
a matrix. A natural generalization of the SVD is the problem of low-rank approximation to high or-
der tensors, which we call the multidimensional SVD. In this paper. we investigate certain properties
of this decomposition as well as numerical algorithms.
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1. Introduction of the problem. The problem of high order tensor decompo-
sition has been studied by mathematicians who are interested in algebraic properties
of tensors, by psychologists who need to analyze multiway data, as well as by engineers
and statisticians who are interested in high order (tensor) statistics and independent
component analysis (ICA). This decomposition is a generalization of the SVD that
gives a low-rank approximation to a matrix (i.e., a second order tensor) [11]. However.
a direct generalization of the SVD is nontrivial, since the definition of a rank that
preserves all of the good properties of the SVD does not exist. At the current stage,
little detail is known concerning general rank decompositions of a high order tensor,
even though there have been a number of works in this direction [21, 24, 25, 27, 28].
As a consequence of the lack of a good tensor rank definition, there is no “best™ way
to define low-rank approximation for tensors of order higher than two, as pointed out
in [27].

Computationally, the most popular method is based on alternating least squares
minimization. However, the convergence behavior of this method has not heen suf-
ficiently analyzed. A rigorous analysis of the method is given in section 4. We also
propose a new method to compute the optimal rank-one approximation. This algo-
rithm is a generalization of the Rayleigh quotient iteration for eigenvalue problems.
If we consider a matrix as a high order tensor, then an interesting application of this
procedure leads to a novel method for computing a singular value/vector pair for the
matrix.

An important application of multidimensional SVD is multiway analysis. Two
models of decomposition have been frequently used: one is the Tuckerd model pro-
posed in [30]; the other is the PARAFAC-CANDECOMP model proposed in [7. 16].
For third order tensors, the Tncker3 model is given by Z, ik Ti® Yj @ 2k gijk, where
¢ is an order 3 tensor called the core array. The PARAFAC-CANDECOMP model
approximates a third order tensor by the sum of a few rank-one tensors—this is equiv-
alent to the Tucker3 model with a diagonal core: ). x; @ y; @ z;. Both models can be
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easily extended to the higher order case. For more detailed descriptions of these mod-
els and existing computational algorithims, see [15, 17, 18, 22, 27] and the references
therein.

Another application of multidimensional SVD is independent component analysis
(or blind source separation). In this case, we attempt to find a matrix A from vector
observations xy,....z, that are taken from an unknown distribution D, such that
the components of Az are statistically independent when x is drawn from D. Many
solutions have been proposed in the literature based on different formulations of this
problem; see (3, 4, 5. 8, 9. 10, 26, 31] and the references therein. Omne sohition,
which is based on fourth order cumulants, solves the ICA problem by decomposing a
symmetric fourth order tensor into the sumn of symmetric orthogonal rank-one tensors
[4, 8, 10] (see Definition 3.1). Note that a fourth order tensor [a;;x] is symmetric
if we have ajjp = ayjpep for any permutation (i'j'k'l') of (ijkl). From the tensor
decomposition point of view, this approach to the ICA problem leads to an orthogonal
PARAFAC-CANDECOMP model,

There is an interesting relationship between rank-one and rank-F approximation
in the PARAFAC-CANDECOMP niodel. In the second order (matrix) case, from the
optimal approximation property of the SVD. the optimal rank-F approximation of a
tensor is equivalent to the following incremental rank-one approximation approach:
we first fit the original tensor by a rank-one tensor, then subtract the rank-one ap-
proximation from the original tensor and fit the residue with another rank-one tensor.
This procedure is repeated until F' rank-one tensors are found. Therefore for second
order tensors, the rank-F approximation problem can be reduced to the rank-one ap-
proximation problem. The simplicity of this incremental rank-one fitting procedure is
very attractive; although for higher order tensors it is not necessarily equivalent to the
PARAFAC-CANDECOMP approximation. However, we will show in section 3 that
for the special case of orthogonally decomposable tensors defined later (this special
case includes the fourth order cumulants approach to the ICA problem), the incre-
mental rank-one approximation procedure yields the solution to the optimal rank-F
approximation.

Therefore, computationally, we focus only on the following rank-one approxima-
tion problem: find vectors x, y. and z to minimize

(1.1) Z(J*iyjzk — k)
1,7,k

where [a;j;] denotes a third order tensor. For notational simplicity, we illustrate our
results by using third order tensors whenever generalizations to higher order cases are
straightforward. Subtle differences will be mentioned when they exist.

2. Equivalent rank-one formulations. Note that in (1.1), each vector . y. or
z is only determined up to a scaling factor. Therefore we can impose the constraints
llzll2 = llyll2 = llzll2 = 1 and write (1.1) as

(2.1) min Z(,\-_ringk - ﬂz’jﬁ:)g-
ik
DEFINITION 2.1. Given nonzero vectors x, y, and z, the generalized Rayleigh
quotient (GRQ) is defined as
zﬁju‘ﬁ. (L-ijk-ﬂg,tj;,'z;-

GR :‘:!z —_ ’
@2 = L, Tl T2k
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Similar to the standard Rayleigh quotient, we define the generalized Rayleigh
quotient GRQ(z,y, z) in a way that is invariant under a scaling of z, v, or z. It is
easy to verify that if ||z]2 = [|y]l2 = ||z]|l2 = 1, then A = GRQ(z, y, z) minimizes (2.1),
and the minimum value is

(2.2) > af — GRQ(z,y, 2)%.

ik
It thus follows that (1.1) is equivalent to the dual problem of maximizing GRQ
(2.3) max Z Qi TiY5 2K,

5.k

under the constraints that
(2.4) me:Zy?=Zz§=I.

i i k
We can write down the Lagrangian for the dual problem as

_ K2 2 H3 n:

(2.5) ; ik T2k — — Z Z( W= D) zk: g —
By differentiating (2.5), we obtain the following system at a critical point for each

component x; of x, y; of y, and z of 2:

Zg‘,k QiKY 2k = 1Ty,
(2.6) D ik QigkTizh = M2Yj,
EIJ QijkTily = U3k

We now multiply z;, y;, and z; to the first, second, and third equations, and sum over
i, j, and k, respectively. This gives pn = pio = gz = }_, ; ) aij®iyj2 = GRQ(z, y, 2).
Let A = GRQ(z, y, 2); then we can rewrite the above system as

2k QigkYizh = ATy,
Dk Giindize = Ay,

2.9
( ) Zi.j QijkTilf; = Az,
2 i gk QigkTiYize = A
Note that a nonzero solution to (2.7) automatically gnarantees that ||z = ||y|lz =
ll2]l2 = 1.

3. A special tensor decomposition. In this section, we study the following
orthogonal tensor decomposition.

DEFINITION 3.1. We say that a tensor [a;;x] is orthogonally decomposable if it
can be written as the sum of F' rank-one tensors T, @y, @2z, (p=1..... F) such that
Ty L 2g, Yp LYy, omd 2p L 29 forp#g.

It is not difficult to extend this definition to include higher order tensors. In
general, orthogonal decompositions do not necessarily exist. However, for the ICA
problem, the fourth order cumulant tensors are orthogonally decomposable [4]. In
the ICA literature, a Jacobi-type scheme for approximate diagonalization of multiple
symmetric matrices has been proposed to compute this decomposition [4, 6]. Some
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numerical aspects of simultaneous matrix diagonalization can be found in [2, 12, 13].
In the following, we show that if a tensor is of order higher than two and is orthogonally
decomposable, then the decomposition can be correctly computed by the incremental
rank-one approximation algorithm.! Therefore, the orthogonal tensor decomposition
problem can be reduced to the rank-one approximation problem. A consequence of
this result is the uniqueness of orthogonal decomposition for tensors of order higher
than two. This uniqueness of decomposition (in the special case of third order tensors)
has been previously discovered in [28] using a different analysis.

Now consider the orthogonal decomposition of tensor [a;;x]:

F

g = E Liplip<kp,
p=1

where we assume that ), ziptiq = 0, D Yipltiq = 0, and 3 zkp2ke = 0 for p # q.
Note that for convenience, we use the notation v, to denote the ith component of a
vector vp.

Consider the least squares rank-one approximation (1.1), for which we can always
do an orthogonal transformation separately for each index 7, j. and k without changing
the least squares error. Therefore, without loss of generality, we can assume that
Tip = Qpip; Yip = Ppbip, and 24 = Ypbyy, where

é‘ﬁ{ Lifi=4g,
YT 0ifi#g
is the Kronecker delta symbol.

Let Ay = apfyp; then Bk = Z Apligiplip. Let (.r* y*.z") be a nonzero
solution of (1.1), and let 2’ = z*/||z* ||z, ¥’ = ¥*/||ly*|l2, and 2" = 2* /|| 2*||2. Without
loss of generality, we can assume that |2}| achieves max(||’| s, |[¥/[lsc: [|2"llc). By
(2.7), we have Ar] = A\yjz1, where |A| is given by (2.3).

Since |A| achieves the maximum in (2.3), [A] = |A1|. Assume that [a;;,] is nonzero;
then A # 0 and #{ # 0. We thus obtain the inequality |2)| < |yjz}|. Note that by
assumption, 1 > |z}| > max(|y}],|z{|). Therefore the inequality can be achieved only
at |z}| = |y1| = |21| = 1, which shows that |A| = || = max; [X;] and 2/ =y/ = 2' =
€1, where e; is the vector with 1 in the first element and 0 elsewhere. Therefore an
optimal rank-one approximation is given by a* @ y* @ 2" = A\e; ® e R €.

Since [a;jx] — @* @ y* @ 2* is still orthogonally decomposable with rank F — 1
by definition, it follows that by repeatmg the rank-one approximation algorithm F
times, we obtain the decomposition Zp_l TiplipZkp. Observe also that the uniqueness
of the computational procedure implies that the orthogonal decomposition of [a;;x] is
unique, and the same analysis is valid for tensors with order greater than 3. We can
summarize the above results in the following theorem.

THEOREM 3.2. If a tensor of order at least 3 1s orthogonally decomposable, then
this decomposition is unique, and the incremental rank-one approzimation algorithm
correctly computes it.

System (2.7) is stable under a small perturbation if the Jacobi matrix J in (4.5)
is not singular. Since our analysis is based on the equality Az = Ayy}z] that comes
from (2.7), the decomposition computed by the ineremental rank-one approximation

HIn [27], the authors introduced a more general concept of arthogonal PCA-k decomposition.
They argued that the decomposition can be computed using the incremental rank-one approximation
procedure. However, their proof was faulty. See [21] for a detailed study.
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method is also stable under a small perturbation of [a;;x]. This is not true for matrices
since J becomes singular (see section 4). Consequently, the singular vectors can be
nonunique and unstable under perturbation when some of the singular values are not
distinct.

4. Algorithms.

4.1. Generalized Rayleigh-Newton iteration. Newton’s method can be ap-
plied to solve (2.7) for eritical points. In order to derive the algorithm, we shall state
an important property of the GRQ.

THEOREM 4.1. Assume that (X, x,y,2) is a nonzero solution to (2.7); then for
small perturbations bz, oy, and 6z, we have

GRQ(z + 62,y + 6y, 2 + 62) = A+ O([|éx |3 + [|8yll3 + [162]13).

Proof. We can assume without loss of generality that 78z = yTéy = 2762 = 0.
This is because we can write dz as the sum of a component orthogonal to = and a
component parallel to @ (similarly for y and 6z). The component parallel to = does
not modify the GRQ; thus only the component orthogonal to 2, which is at most as
large as §z, contributes to the change of the GRQ.

Now we have

Z A Oy 2k = A Z x;bw; = 0.
i

1.k

Similarly Zi‘j,k Qi Oy 2 = Eu‘k ayx®iy;02zx = 0. Therefore

Z aijk(®s + 0i)(y; + 6y;) (2 + 62)
ik

= Z kTl 2% + Z i 02028+ Z agjkridy; 2k + Z @ik Ty 02k
ik i3k ik ik

=i Z(ﬂ-,ﬁjkﬁ.’lﬁi{‘syjz;; + a,-,jk'émiyjﬁzk -+ a,-jk-:z:;géyj YZp + aijkﬁar,-éyjézk)
ik

=A+0+0 [ [sabys| + D l6y;bzi| + ) [bwibz] + > |6wiby;6z|

i gk ik ik
(4.1) =X+ O(||6zl2[l6yll2 + [|6x||2(|62]l2 + [l6yll2ll6z]l2)-

The last equality follows from the Schwartz inequality. We also note that

I+ Salla = /llall3 + 20782 + [52(13 = /1+ 0+ [l6all§ = 1+ O(6z[3)-
Similarly, |ly + 8ylla = 1+ O(|6y||3), and ||z + éz[|2 = 1 + O(||62[|3). Therefore
(4.2) e + 8zl lly + yll2 ||z + b2ll2 = 1+ O(|8]3 + [16y]I3 + [16211%).

Observe that (4.1) and (4.2) are, respectively, the numerator and the denominator in
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the definition of GRQ(x + éx,y + dy. z + 62); therefore

A+ O(||6z|2]|6yll2 + |6z (2ll62]l2 + [|6y]2]é2]2)
1+ O(]|6x (|3 + lléyll3 + [162]13)
= X+ O(||6z||2/|6yll2 + ||6z]|2[|62l2 + [|6y]l2]l62]]2)
+ O(|6z||3 + [|6yl13 + ll62(13)
=X+ 0(||6z(13 + [|6yll5 + [l6z[13). O

This theorem is a generalization of the following well-known fact: for eigenvalue
problems, the Rayleigh quotient is quadratically as accurate as the approximate eigen-
vector. Note that the theorem is also quite intuitive from the following nonrigorous
argument: since a critical point of (2.3) optimizes GRQ(z,y, z), GRQ(z, y.2) has a
zero gradient at a critical point.

Based on Theorem 4.1, a procedure similar to the Rayleigh quotient iteration (cf.
[14]) can be obtained. By Taylor expansion, we know that given A, a linearization of
(2.7) at (x,y,z) gives

> aiji(yibzx + Byjzi) — Aozi = Aoy — Z Aijk Y2k

GRQ(z + b,y + by, z + 62) =

i,k ik

(4.3) Z aijk(@idzr + bxi2) — Aby; = Ayy — Z iR Bk,
i,k ik
Z aigi(iby; + 6iyy) — Nz = A — 3 iy
i,k 4.k

Now, let the (approximate) true solution be x* = o +déx, y* = y+ 0y, and z* = 2+ dz;
we obtain the following linearizations:

=22+ (Y + 2Y]) = D Gkl 2,
ik

Jk
(4.4) =My + ) aue(@izy + awl) = ) agrmizk,
ik ik
— Az + z aijk(Tay; +y;e7) = Zaijkﬂfiyj.
isj Wi

For rth order tensors, the right-hand side should be multiplied by » — 2 (which is 1 in
our case of r = 3). The reason is that in the general case. 2-way product terms such
as y;zx in (2.7) are replaced by (r—1)-way product terms. The linearization of each of
the (r—1)-way produet terms contributes r — 1 additive terms to the left-hand side of
the equation, which needs to be compensated by a multiple of » — 2 on the right-hand
side for compatibility with (2.7). Note that for matrices (second order tensors), the
right-hand side is zero, and this is related to the singularity of the left-hand side when
r = 2 (this point will be discussed later). In general, the above linear equation can
be written in the matrix form as

(4.5) J(A, w)w* = b(w),

where w denotes the vector concatenation of x. y, and z, and b(w) is the right-hand

side of (4.4). Here

—Aly, xd, Az A
J(xw) = AT = AL, xdy Ay ;
& A" S
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where Iy, xd,s Lisxdss and Ly x4, are identity matrices corresponding to the x, vy,

and z directions, respectively. The (i, j)th element of Az is 3, aijeze (i =1,...,di;
j=1,...,ds); the (i, k)th element of Ay is z:j oty (€ =10 dis & =1y 0nd5)
and the (j, k)th element of Ay is ¥, aijpa; (j = 1,....dz; k= 1,...,d3). To some

extent, J(\, w) can be regarded as the Jacobian of (2.7) or the Hessian of (2.3).
Note that given x, y, and z, A can be taken as the GRQ A = GRQ(z.y, 2); and
given A, w can be updated by (4.5). We can alternate between these two steps, and
that leads to the following algorithm.
ALGORITHM 4.1 (GRQ-Newton iteration).
Given initial estimate w° = [2%,40,2°]"
for p=0,. .,
normalize w? so that ||zP|]2 = [|[yPll2 = [|28]l2 =1
let \¥ = GRQ(z?, 4", 2P)
solve J(A?, wP)wPt! = b(w?) for wP™!
endfor
Note that (4.5) is used in Algorithm 4.1 since this particular formulation is directly
comparable to the standard RQI (Rayleigh quotient iteration). However, our later
convergence analysis will mostly rely on (4.3), which can be written as

(4.6) J(Aw)dw = (A, w),

where ¢(A.w) = Aw — ;i—zb(-w) and dw corresponds to the difference w?*! — w? in
Algorithm 4.1. Equation (4.6) can also be more suitable for iterative algorithms since
problems introduced by the nondefiniteness of .J are alleviated (this point is discussed
shortly).

As we have mentioned, there is a factor r — 2 in b(w) for the order r tensor
formulation. Consequently, an important observation is that Algorithm 4.1 fails at
= 2 since b(w) = 0. This case corresponds to the standard matrix SVD. A standard
RQI replaces the definition of b(w) by b(w) = w. The inconsistency of the algorithm
at r = 2 is due to the singularity of J(A*,w*) at the critical point (A*, w").

For the order r tensor formulation of (4.5), let W,. be the » x r matrix consisted
of all 1’s except for —1's on the diagonal. Let (u,[a1,...,@,]") be an eigenpair of

W, and consider the vector @* = [aywiT. ..., awi"|", where (A", w*) is a solution
to (2.7), and w* = [wiT,..., wT]T. Since, for all 7, Z#iﬂj = (p + 1)ay;, by using

the eritical point equation (2.7) we obtain
J(X* w*)d® = =AT0" + (A DAT@".
This implies that @* is an eigenvector of J(A*,w™) with an eigenvalue A"p. Since
W, = v,.'u.f" — 2 s

where v, is the column vector of dimension r that is composed of all 1’s, W,. has one
eigenvalue of r — 2 and the rest are —2. It follows that when r = 2, J (A", w*) is
always singular. However, when r > 2, such a conclusion cannot be drawn from this
analysis. In fact, J(X*,w*) becomes singular only in degenerate cases, which rarely
happens in practice. This is the fundamental difference between the case r = 2 and
the case r > 2. Therefore unlike the ill-conditioned standard RQI., matrix J is usually
well-conditioned when # > 2. In this case, Algorithm 4.1 is consistent, and it locally
achieves quadratic convergence as shown in Theorem 4.2.

From the above discussion, we can see that vectors [aywiT.. ... apw}T]" span
an invariant subspace of J(A*,w*). Although the matrix J is indefinite at (A*,w*),
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the only positive eigenvalue of J(A*,w™) is (r — 2)A* with the eigenvector w*. Be-
cause (A", w*) in (4.6) is orthogonal to w*, J behaves like a definite matrix in a
neighborhood of w* for (4.3) if iterative methods are employed. Computationally,
we do not have to factorize the matrix at each iteration if the direct factorization of
a size ), m; matrix (O((3; m;)*) operations) is costly. A (preconditioned) Krylov
subspace method [14] may be employed in practice. With a fixed number of inner
iterations, the computation requires only O((3; m ;)?) operations. However, this
method reduces the quadratic convergence shown in the following theorem to linear
convergence.

THEOREM 4.2. Let (\*,w*) be a nonzero solution to (2.7). If J(A*.w*) is non-
singular, then Algorithm 4.1 converges to (A\*.w*) quadratically in a neighborhood of
(A*, w*).

Proof. Since J(A*,w*)w® = b(w”), it follows from the linearization formula-
tions (4.3) and (4.5) that

0= J(\,w)w* — blw")
= JA w)w” — blw) + O(||lw* — wl|3).
Since A* = GRQ(w*) and, by Theorem 4.1, GRQ(w) = A* + O(|lw* — w(3). we
have J(A*,w) = J(GRQ(w), w) + O(|lw* — w||3). Note that b does not depend on A.
Therefore
J(GRQ(w), w)w™ — b(w) = O(||w* = w]|3).
We have assumed that J is nonsingular at J(A*, w*); therefore

Pt — wt|y = [|J(GRQ(w?), wP) " tb(w?) — w2 = O(||w? — w*||3).

Also note that if w = [27,»7,27]T is in a neighborhood of w* = [2*7 y*T 2*T]7,

then
R T
[ % g 2 ] — "~

iz lll2" llll2

= O(|lw = w*[j2).

2

This implies that the normalization step in Algorithm 4.1 preserves the rate of con-
Vergence. O

Algorithm 4.1 can also be used to find a singular value and vector for a matrix (or
an eigenvalue and vector for a symmetric matrix). Let B be a matrix of size m; x ma.
We can regard it as a third order tensor of size m, X ma x 1. Since the third dimension
is always unit 1 after normalization, the iteration depends only on vectors z and y
corresponding to the first two dimensions of B. Matrix J can be written as

- )\I-m} Xmi B By
(4.7) JO\ [, y]) = BT Mpoxm, Bz
y" BT &' B —A
and b becomes
By
(4.8) W= 8%z |,

:rTBy
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where both - and y have to be normalized: ||z|2 = [y/|2 = 1. If .J is nonsingular, which
is extremely likely, then Algorithm 4.1 is consistent with good convergence properties.
This algorithm can be compared to the standard RQI, where the last row and the
last column of J are omitted in the definition, and b is replaced by w = [z, y7]".
We note that in the RQL two choices can be made in the normalization step. The
first one is to normalize x and y separately after each iteration. This case corresponds
to an application of Algorithm 4.1 in that the GRQ is equivalent to the traditional
Rayleigh quotient. The second choice is only to normalize w = [27,yT]7 as a whole
(lz]l2 and |jy|lz can be different). This choice is more standard since it is obtained
from the direct application of RQI to the equivalent eigenvalue problem of a SVD
problem. However, in this case, the GRQ is not equivalent to the traditional Rayleigh
quotient. The difference between these two normalization procedures is very small,
as indicated by Example 5.2. Finally, it should be noticed that we can regard B as
even higher order tensors, and that leads to different procedures.

4.2. Alternating least squares method. In practice, the most commonly
used method for solving (1.1) is the alternating least squares (ALS) algorithm, which
was studied in [1, 20, 23]. An interesting property of this procedure is that it gener-
alizes the power method for eigenvalue problems. Other generalizations are possible,
such as the Jacobi procedure described in the next section. Although the convergence
of this method was studied, the rate of convergence has not yet been analyzed in the
literature. We show that by using the formulation developed in the previous sections,
we can prove linear convergence of this method in a neighborhood of the optimal
solution.

ALGORITHM 4.2 (ALS).

Given initial position w” = [a°,3°, 2|7

forp=10;...,
for o= 1;: o5
;o [ 2 DD
2] = Dok GigkY; 2
endfor
for 4=1,....
o I omptlp
Ui = Lk Gkt %
endfor
fork=1,....
G 75l SR el oneedl
2 = Ei‘j,k Qighdy Yy
endfor
normalize so that ||z ™!{|s = [|yP* ]2 = [|2#H |2 =1
endfor

Algorithm 4.2 is derived by individually varying @ (or y or z) while fixing the
other two vectors in (1.1). It can be easily checked from (2.3) that the optimal x is
proportional to Zz‘, ok Wikl Zhee Due to the normalization step, A does not need to
appear in the algorithm.

Another way to look at this method is to regard it as a nonlinear version of the
Gauss—Seidel iteration (cf. [14]) applied to (2.7). Locally, after a linearization of the
original problem, this algorithin can be regarded as an approximation of the block
Gauss-Seidel iteration for solving the linear system (4.5). Although the Jacobian
matrix J(A, w) can be indefinite, as we have discussed in section 4.1, the right-hand
side of (4.3) lies approximately in the subspace where J is definite. Moreover, at
each Gauss-Seidel iteration, dz (dy or éz) is approximately orthogonal to x (y or 2);
therefore each direction generated by the Ganss—Seidel iteration lies in the subspace
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where J is definite. This indicates that J can essentially be regarded as a definite
operator. From this reasoning, we can obtain the following theorem.

THEOREM 4.3. Assume that (A*, x*,y*, 2*) mazimizes (2.3) and J(\*, w*) is non-
singular, where w* = [a*,y*,2*]7; then Algorithm 4.2 converges to (/\*,w*) linearty
in a neighborhood of (X*.w*).

Proof. When w” is close to w*, consider wP*! obtained by Algorithm 4.2, w#*!
obtained by Algorithm 4.1, and v**! obtained by approximately solving (4.5) with
the block Gauss-Seidel iteration. That is, for each & = 1,....3. solve the following

A
equation for vf 7'

(4.9) D TtV Pyl LS T (P, wPyud = by (w?),

<k >k

where the subscript & (or f) indicates one of the block components corresponding to
x, ¥y, or z. As mentioned earlier, w” is obtained from the nonlinear block Gauss-Seidel
version of (4.9). Now notice that (4.5) is a linearization of (2. 72 and \* = GRQ(w?) is
second order in w” —w* from A*. Tharefore at each step k, nf+ wz“ is second order
in w? —w* and w? —wPt1, ot —wP | = Ofjjw? —w*||* + [lwP —wPt|2)
Also by Theorem 4.2 we have ||uf°>+ ! —w*|| = O(|lw? — w*||*). Therefore we only need
to show that [oP*! — uP*1|| < alfw? — uP*!(| for some @ < 1 where o is independent
of w*,

By (4.6), we know that J(A\, wP)(u?t! —w?) = ¢(AP, wP). Equation (4.9) implies

that v"*! — wP can be regarded as the approximation of the solution dw = u?+' — w?

0 (4.6) after one block Gauss-Seidel iteration. Let J* = J(A*,w*); then (4.6) can be
replaced by J* 6w = ¢(N, w”) with second order accuracy both for the exact solution
uPT —w? and for the Gauss-Seidel approximation +*+! —w”. We thus need to show
only that the Gauss-Seidel iteration for solving J*dw = (AP, w?) converges linearly
with the starting point éw = 0. Furthermore, each component i (A, w?) of the right-
hand side is orthogonal to w} by the definition of \?. Therefore, if we let V' denote the
subspace spanned by [z*7,0,0]7, [0,y*7,0]7, and [0,0,2*T]7, then we can decompose
c(AP,w?) as &+ Ac such that ¢ € V+ and Ae = O(||@)| « [w? — w*||). Since Ac is a
small perturbation which does not affect the linear convergence rate, we need to show
only that the Gauss-Seidel iteration for solving J*éu = & converges linearly with the
starting point du = 0.

It is easy to check that if ¢ € V-, then each new component duy, generated from
the block Gauss-Seidel iteration also lies in V. Therefore, the convergence relies
only on the properties of J* in the subspace V. Since (A", w") maximizes (2.3) and
J* is nonsingular, J* has to be negative definite on V. The theorem follows from
the well-known fact that the Gauss-Seidel iteration converges linearly for definite
matrices [14]. a

There are many possible variants of Algorithm 4.2. One is to replace the Gauss—
Seidel iteration by an iterative algorithm with a better convergence behavior (such
as the nonlinear version of successive overrelaxation or a Krylov subspace method
(14]). Another variant is to vary two or more components (& or y or z) at the same
time, instead of varying only one component. Note that the optimization of varying
two components can be obtained from an SVD algorithm. Varying more than two
components at the same time leads to a divide-and-conquer approach. However, all
of these algorithms have linear convergence rates. Therefore locally the GRQ-Newton
iteration is more efficient computationally.
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4.3. Jacobi Gauss—Newton procedure. For problems that need to be solved
on a parallel computer, it is often desirable to use the Jacobi version of Algorithm 4.2.
There is also an interesting relationship between this Jacobi algorithm and the Gauss-
Newton procedure for nonlinear least squares problems. The Gauss-Newton method
is an approximation to Newton’s method with the property that the resulted linear
system is always semidefinite. As we show in section 5. this method (Algorithm 4.3)
could be much slower than Newton's method. However, it still has many useful
applications, such as for certain engineering problems where the enhanced stability
of the Gauss—Newton procedure may be desirable. In addition, the method does not
require the Hessian matrix, which may be expensive to compute.
ALGORITHM 4.3 (Jacobi Gauas Newton iteration).
Given initial position w? = [27, 3", 2°]7
for p=10,...,
gy = D Qijrlf; 2
JjH—l = E gy agj;,:z:pz}':.
Zf+1 o sz.k U'JA' J'
normalize so that || ?’“Ho = [|gP*le = 122 =
endfor
To derive Algorithm 4.3 as a Gauss-Newton procedure, we consider the formula-
tion (2.1) where X is still estimated as GRQ(w). Given this parameter A, we linearize
each term A(z;+ 6w,) (y; + 0y;) (2 + 621) — G5 as

/\:r,;;zjjzk — Qijk + A(ﬁa:,-yjzk = 21','6yj2k i :r,-yjézk).

For the Gauss—Newton procedure, we work with the least squares formulation of this
linearization as follows:

(4.10) 5 it in Z[A.T,y_, 2k — @iji + MOmiyizx + by zx + ziyid2k)].
i3k

The above system is singular; therefore, we need to impose the following normalization
constraints: @76z = y"dy = 276z = 0. After some algebraic manipulations, we obtain
the following solution to (4.10):

Ly = Z QijkYjaR/A — 2
1.k
oy; = Z QijkTiZk /A — Yjo

bz = Za‘i‘,-k:z";yj/)s - Zg

i

By normalizing @; + 8z, y; + 6y, and z; + bz, we obtain an update rule that is
equivalent to Algorithm 4.3. Similar to Algorithm 4.2, the Gauss-Newton iteration
approximately solves (4.5), but it does not guarantee the convergence even locally.
However. in our experiments the algorithm usually converges, although the observed
rate of convergence is slightly slower than that of Algorithm 4.2. The main advantage
of this method is its parallelizability.

4.4. Computational costs. In order to compare algorithms described in the
previous sections, it is necessary to analyze their computational costs. To be more
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general, we analyze these algorithms in the case of rth order tensor approximation.
Assume that the dimension m; for each side of the tensor satisfies my > mg > -+ >
m,.. We also assume that [a;, ;| is not sparse and does not have any special structure
that we can take advantage of. For simplicity, we keep only operation counts accurate
up to the leading term in our analysis.

Given any vector w;, we define the inner product of an rth order tensor A =
,,,,, i,] and a vector w; as a tensor of order r —1: (a,w;) = [, aiy,...i,wi, ;]. The
computation of this inner product requires 2] ;M operations. Therefore, in order to
evaluate GRQ, the best way is to compute the inner product of A and w; in the order
from j =1 to j = r. This computation requires 23 [],~; my = 2 Hj m; operations.

We can now consider Algorithm 4.2. In the inner loop. the equation for the
first component requires us to compute the inner product of A and mj’ (5 = 1),
with a total of 2]]; m; operations. Since the normalization of w{ 1 requires O(my)
operations, the total cost should be 2] jmy. For each component k > 1, we need
to compute the inner product of A and u'j:’“H for 7 =1,...,&k — 1. Since the inner
product of 4 and 'u;]’j"*'l for 7 = 1,...,k — 2 is available from the previous step. the
overall computation at step k is to take the inner product of (A, [w;-’H]];k,g) with
u‘ﬁ:fi in 2 Hj> x— M operations, and then the inner product of (A, ['wj&l} k1) with
[‘lL‘Egl]kﬂ-l:r in 2Hj>h m; operations. The total operation count at step k& > 1 is
therefore 2[],», _m; + 2[];5, m;. Summing over k, we need 4[], m; operations
for each outer iteration. Since the procedure described for computing Algorithm 4.2
is still valid for evaluating inner products (A, [wy, ..., Wg, ... w.]) for k =1,...,n
simultaneously (i, indicates that wy is omitted in the inner produet computation),
it follows that Algorithm 4.3 also requires 4], m; operations.

We now show that 6 Hj m; operations are needed to compute J and b in Algo-
rithm 4.1. Note that b can be obtained from .J in G(Hj ;) operations; therefore we
need to show only that J can be obtained in 6 [, m; operations. This can be done in
two steps. In the first step, we compute Jy; (and therefore Jy 1), which requires m;,
times 4] ., m; operations from the previous analysis. In the second step, we first
comipute (A,w]), which requires 2]] ; my operations, and then recursively compute
the inner products of {A, un) with different combinations of r — 3 vectors from [w;]2.,,.
which takes only O(]];, m;) operations. Therefore a total of 6 [, m; operations are
needed to compute J and b. Since O((3; m;)*) operations are required to solve the
linear system, each iteration in Algorithm 4.1 costs 6 [] jmy +O(( EJ m;)*) opera-
tions. This will be comparable to the computational costs of the other two algorithms
if [[;m; is at least of order m{. Note that if an iterative method is employed. then
O((X; m;)?) operations are required to solve the linear system approximately. In
this case, however, we may obtain only a linear convergence rate.

The computational costs for each iteration of the algorithms are summarized in
Table 4.1. Algorithm 4.1 is denoted by GRQI; Algorithm 4.2 is denoted by ALS; and
Algorithm 4.3 is denoted by GN.

TaBLE 4.1
Comparison of computational costs in flops.

Algorithm GRQI ALS GN
Flops/iteration | 6 [[7_y m; + O((3)_ m;i)?) A1y my | ATT5, my
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5. Experimental results. Since the computational cost for each method has
already been discussed, we study only the convergence behavior for these methods.
We give two examples: the first example compares the convergence of the algorithms
with synthetic and real multiway datasets; the second example focuses on the matrix
SVD problem. “Optimal solutions” in these examples are obtained numerically up
to the machine precision (denoted by €pacn). This has been done by first using ten
iterations of ALS to find an approximate solution and then using GRQI until the error
is within the machine precision. Strictly speaking, the computed optimal solution w*
may not be exact. The tensors are also not necessarily orthogonally decomposable
in the examples, and we compute only rank-one approximations. However, rank-
F approximations can also be obtained by using the incremental algorithm we have
mentioned. Although the scheme may not lead to an optimal low-rank approximation,
a reasonable approximation may still be obtained. In all of the following experiments,
we report the average performance of ten runs of the algorithms with ten different
randomly generated initial vectors. In each of the ten runs, the same initial vector is
used for all algorithms.

5.1. Example 1. The optimal solution is denoted as w*, and the residue R(w)
of w is defined by (1.1). We do not report convergence results for GRQ since its
behavior is similar to R(w) (both are of the order [w — w*||3).

In Table 5.1, we consider a random low-rank 40 x 30 x 40 tensor generated as
the sum of 20 rank-one tensors—each rank-one tensor o @ y @ z is generated with
components of x, y, and z uniformly distributed in (0,1). The 2-norm of this tensor
is 569. For each of the ten runs, we start with a randomly generated initial vector,
having an average residue of 448. The residue of 1" is 74. As we can see, a rank-
one approximation reduces the residue by a factor of 6. The condition number of
the Jacobian at w* for GRQI is about 2, which explains why, in this case, both
ALS and GN converge relatively quickly. Another interesting observation is that all
three algorithms converge to the optimal solution from a randomly generated starting
approximation. We believe this is related to the dominance of the optimal rank-one
decomposition in this example.

TABLE 5.1
Pasitive low-rank random 40 x 30 x 40 tensor.

[lwe —w= ]l
P 1 : 3 4
GRQI | 74%x 1073 | 1.0x 10-7 | 54 x 10~1P T
ALS | 1.2x1072 | 16%10~* | 41x10-7 | 32x109
GN | 1.8x1072 | 68x10~% | 30x10~5 | 1.4x10%
R{wy) — R(w*)
P 1 2 3 4
GRQI | 1.2x 107 | 2.8 x 10— Exadh Etaah
ALS | 85x107! | 62x10° [ 3.9x 10~ | 5.0x% 10~18
GN T4 x10m2 1.0 x 10~2 1.9x10~% | 4.6x 102

Table 5.2 shows the results with a random 10 x 15 x 20 x 20 tensor. Each entry
of the tensor is an independently generated Gaussian variable with mean () and stan-
dard deviation 1. The norm of the tensor is 246.00 and the optimal approximation
has residue 245.68. Therefore, the optimal rank-one approximation performs very
poorly. Also in this case, we observe that GRQI and GN may converge to nonoptimal
approximations if we start with random approximations. Therefore we use starting
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approximations that are generated by randomly perturbing the computed optimal
solution so that they are close to the optimal solution. The condition number of the
Jacobian for GRQI at w* is 58.4, which is relatively large. Thus both ALS and GN
converge much more slowly than GRQL

TABLE 5.2
Gaussian random 10 x 15 x 20 x 20 tensor.

lwi —w*2
p 1 2 3 4
GRQI | 1.3%x10~% | 38x10~% | 6.0x 10~ | 2.4 x 1015
ALS | 1L.9x107% | 1.0x10~32 76 x 1075 | 5.8 %x10~3
GN || 24x10=2% | 1i8x710~2 | 1.5 % 10-2 1.3 % 102
R(wy) = R(w*)
P 1 2 3 4
GRQI | 1.3x 1077 | 8.1 x 1013 Exmncly gt
ALS | 46%x107% | 83%x 1078 | 28x10~% | 1.2x10-6
GN [16x107* | 9.7%x10°® | 68%x10~% | 53x 103

Table 5.3 uses the growth curve data of French girls from [19]. The dataset is a
12 x 30 = 8 tensor, indicating 12 ages, 30 French girls, and 8 additional variables. The
rank-one approximation performs very well for this real data, partially because all
variables are positive. While the original tensor norm is 70808, the optimal solution
reduces the residue to 8123. The condition number of Jacobian is 2.3, and we observe
similar convergence behaviors as shown in Table 5.1.

TABLE 5.3
Grouith eurve data of French girls.

llwi —w*[l2
P 1 2 3 4
GRQI | 14x10"1 | 37%x10~% | 1.8x10~% | 5.0 10~16
ALS' | 42x1072 | 6.7 x 1072 | 97 x10=% [ 1d4x10~7
GN | 11x107?! [12x1072 | 1.3x10~3 | 1.5x10~2
R(wy) — R(w*)
r I 2 3 4
GRQI | 5.0x10° | 1.0x 10~} | 9.0 x 10~18 Einnii
ALS 5.8x10% | 1.5x 10~ | 3.2x107% | 6.9x10-?
GN 3.1 x 10% 4.9 % 10! 6.1x10-1 | 74x 103

5.2. Example 2. In this example, we compare three algorithms for computing
a singular value of a matrix. GRQI is the method of treating the matrix as a three-
dimensional tensor and applying Algorithm 4.1, which is described in section 4.1. RQI
denotes the standard Rayleigh quotient iteration applied to the equivalent eigenvalue
problem. NRQI denotes the standard Rayleigh quotient with separate normalization
of x and y after each iteration, as described in section 4.1. We generate a random
40 x 50 matrix with entries uniformly distributed in (0,1). Table 5.4 reports the
convergence of singular values (denoted by o) and singular vectors (denoted by w)
obtained by the algorithms after each iteration. After the fourth iteration, the esti-
mated condition numbers are 2.4 for GRQI, and of the order 10'® for both NRQI and
RQI. For this problem, GRQI not only is much better conditioned, but it also seems



TONG ZHANG AND GENE H. GOLUB

TABLE H.4

40 x 50 singular value problem.

[l — w*||2

P 1 2 3 i
GRQI | 6.0x1073 [ 15x107% | 40 %1071 | equch
NRQI | 78% 1072 | 23x107¢ [ 26 %107 | enaen

HQl | 72x1072 | 28x107t | 286 %107 | s
ok — o]

D 1 2 3 4
GRQI | 74 x 1074 | 21 x1p714 Emuich E€mach
NRQI | 11 x107! | 1.8x 1075 | 9.7 x 10715 | €pach

BOL [ 1007 || 18%10°% [ BB %10~ | €much

to converge faster. From the table, we also see that all of the algorithins achieve the
machine precision after four iterations.

We shall mention that it is possible to define the inverse iteration procedure
for eigenvalue problems in a more well-conditioned way by introducing a constraint
276z = 0 (see, e.g., [29]). This leads to a more traditional Newton-type method, which
is not equivalent to our formulation. Our formulation has the advantage that the
eigenvalue structure of the .J matrix is better understood (see section 4.1). However,
the exact relationship between this method and the traditional Newton's method
requires further investigation.

6. Conclusions. We have shown that if a tensor of order higher than 2 is or-
thogonally decomposable, then the decomposition is unique and can he computed by
repeatedly applying a rank-one approximation algorithm. Furthermore, even if the
tensor to be approximated is not orthogonally decomposable, incremental rank-one
approximation can still be useful due to its simplicity.

Based on these observations, it is important to study numerical aspects of the
rank-one tensor approximation problem. Specifically, we are able to prove a local
linear convergence rate of the popular ALS algorithm. In addition, based on a formu-
lation that generalizes the Rayleigh quotient variational method for symmetric matrix
eigenvalue problems, we are able to derive a generalized Rayleigh quotient-Newton
iteration (GRQI), which locally has a quadratic convergence rate. For dense high
order tensors, the computation is likely to be dominated by tensor-vector products.
Therefore, locally this method can be more efficient than ALS even after the cost of
matrix factorization is taken into consideration. We have also pointed out that ALS
can be viewed as a nonlinear Gauss—Seidel procedure for approximately solving the
linear system in GRQI. This relationship implies that more sophisticated iterative
algorithms can be applied.

Many open problems still remain though. For example, general properties of high
order tensor decompositions are still not well understood. It might also be interesting
to study numerical methods that directly compute a rank-F tensor approximation,
instead of using the incremental rank-one approximation procedure suggested in this
paper.
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