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Abstract

A series of two-way diode array chromatograms were recorded at 0.1±0.5% and 1±5% of 3-hydroxypyridine impurity co-

eluting with 2-hydroxypyridine, recorded at pH 4.9 (good resolution) and 5.0 (poor resolution). Four methods for PLS

calibration, namely, using summed spectral pro®les, summed elution pro®les, unfolded three-way PLS and true three-way PLS

were applied to the datasets, both using autopredictions and cross-validation. It was found that it was possible to accurately

quantify low levels of impurities. Three-way methods often performed worse than two-way methods using the summed

spectral pro®le probably due to irreproducibility of elution times. # 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

DAD±HPLC is a common method for impurity

monitoring in chemical processes [1,2]. For example,

a batch of drugs may contain a small quantity of by-

product, such as an isomer. It is important not only to

detect whether a peak is impure, but also to quantify

the amount of such impurity. Sometimes the nature of

the impurity is known, and the main aim is to deter-

mine the proportion. Quality control of products dic-

tates upper and lower acceptable limits. A number of

approaches could be employed, but when the impurity

is at very low levels (less than 1%), is closely eluting

and has similar spectral characteristics to the main

component, chemometric approaches are an important

aid.

Chromatographic data may be regarded as being

multivariate. There are a variety of regression methods

for the determination of concentrations of mixture [3±

5], but PLS (partial least squares) is one of the most

widespread. For single wavelength chromatography,

the application of PLS is fairly straightforward, as a

data matrix can be formed with elution time as the

rows and sample number as the columns. However,

when the data themselves have been obtained via

coupled chromatography, the raw data are in the form

of a tensor, with three dimensions, namely sample

number, elution time, and spectral wavelength. This

means that it is no longer a straightforward task to

apply PLS. The data are commonly called three-way
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data, and a variety of approaches such as three-way

PLS [6±8], or unfolded PLS [9,10], have been pro-

posed over the past few years to handle such data. In

order to take advantage of the extra dimension such

approaches are essential.

In this study we report the experimental use of a

number of PLS methods for the quanti®cation of small

levels of impurities in two-component mixtures. The

ability of PLS to determine the amounts of the impu-

rities from known cross-validated calibration sets is

discussed. It is important to recognise that the appar-

ent quality of calibration models themselves is related

to the quality of calibration experiments. This is

especially crucial when monitoring very low levels

of impurities, as often elaborate weighing and dilution

schemes are required, introducing further possible

experimental errors. For example, a chromatogram

that is designed to contain 0.1% impurity may actually

contain 0.11% impurity due to errors in sample pre-

paration. A calibration model may predict that this

sample contains 0.108% impurity. In fact, the calibra-

tion model has only 0.002% prediction error, but it

may appear that the error is 0.008% or fourfold higher

simply because of the method by which the samples

are prepared. There is no real way of avoiding this

apart from the use of plenty of replicates, including all

the dilutions, and a reasonably large number of points

in the calibration dataset.

This paper shows that it is possible to use PLS and

chemometrics to predict the amount of an impurity to

a high level of accuracy, even at very low percentages

(<0.5%).

2. Experimental

2.1. Compounds and chemicals

The compounds used in this study were 2-hydro-

xypyridine (Acros Chemicals, 97%, New Jersey,

USA) and 3-hydroxypyridine (Acros Chemicals,

98%, New Jersey, USA), respectively. Their structures

are shown in Fig. 1(a) and their normalised experi-

mental spectra (pH 5.0) in Fig. 1(b). The spectra were

obtained from the chromatographic analysis of the

pure compounds using a mobile phase composition of

98:2 0.05 M ammonium acetate pH 5.0 (98%, Sig-

maUltra, Sigma, St. Louis, USA):methanol (HPLC

grade, Rathburn Chemicals, Walkerburn, UK). The pH

of the buffer solution was adjusted to the relevant

value using a combination of a 25% acetic acid and a

10% ammonia solution (Sigma, Poole, UK), respec-

tively. For the preparation of both buffer solutions and

samples, deionised water was used exclusively, from a

Milli-Q ®ltration unit (Millipore, MA, USA). Note

that both chromatography and spectroscopy are pH

dependent [11].

2.2. HPLC conditions

All chromatography was carried out using a Waters

HPLC chromatograph (600S Controller, Model 616

pump, Model 717 autosampler) with a C18 reversed

phase symmetry column (Waters, Milford, MA),

(3.5 mm, 100 mm�4.6 mm) at ambient temperature.

The mobile phase consisted of 98:2 0.05 M ammo-

nium acetate (buffered to the pH of interest): metha-

nol. The ¯ow rate was set at 1 ml minÿ1 and 20 ml of

the solution was injected. UV detection was per-

formed using a Model 996 photodiode-array detector,

and UV spectra were collected between the wave-

length range 230±350 nm. The digital resolution was

1 s in time and 2.4 nm in wavelength. For all analyses,

the data matrix for each individual run was set at 130

points in the time direction and 51 points in the

wavelength direction.

Fig. 1. (a) Structures of 2- and 3-hydroxypyridines; (b) normalised

experimental spectra of 2- and 3-hydroxypyridines at pH 5.0.
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2.3. Experimental design and dilution scheme

The pure compounds were run at pHs 4.9 and 5.0,

respectively. At pH 4.9, 3-hydroxypyridine eluted 20 s

prior to 2-hydroxypyridine (3.48 versus 3.81 min),

whereas at pH 5.0, the peaks eluted very closely with

each other (6 s apart), with 2-hydroxypyridine now

eluting before 3-hydroxypyridine (3.38 versus 3.50

min). A schematic representation of the normalised

elution pro®les of a 1:1 mixture of 2- and 3-hydro-

xypyridines at the two pH values is given in Fig. 2. 3-

Hydroxypyridine was treated as the minor impurity

and was studied at two different percentage ranges

which span from 0.1±0.5% in increments of 0.1%, to

1±5% in increments of 1%. All designs were based on

®ve main concentration levels and a total number of 14

experiments. Replication was deemed important, with

the central point replicated three times.

For the two compounds at each pH, stock solutions

were prepared at approximately 50 mg per 100 ml for

2-hydroxypyridine (stock solution A) and 30 mg per

100 ml for 3-hydroxypyridine (stock solution B). For

the 1±5% concentration range experiments, solution B

was diluted 20 times by taking 5 ml and making the

total volume 100 ml (solution C), using the mobile

phase composition described in Section 2.1. Three ml

of stock solution A was then taken and added to 1 ml

of solution C (1%), 2 ml (2%), 3 ml (3%), 4 ml (4%)

and 5 ml (5%). The total volume was made up to

10 ml, by adding the appropriate amount of mobile

phase each time, as shown in Table 1.

All 14 samples were prepared using replicate dilu-

tions, but no instrumental replicates were performed.

Preliminary experiments suggested that instrumental

reproducibility was much greater than the sample

preparation reproducibility. Repeat calibration of pip-

ettes suggested a typical precision of 0.3% using six

replicated calibrations, and 0.1% for the volumetric

¯asks, with accuracies of 0.5% and 0.3%, respec-

tively; in addition there is expected to be a small

weighing error. However, the overall sample prepara-

tion error is under 1%. Note that when least squares

regression is performed, the apparent error can be

heavily in¯uenced by one outlying sample, and the

method of preparation can result in errors of a few

percent that may in¯uence the apparent prediction

error. The overall number of replicates at each con-

centration range is given in Table 2. For the 0.1±0.5%

experiments, the same sequence of dilutions was

followed, but this time stock solution D was used

instead of C. This was 10% the concentration of

solution C, and was prepared by taking 10 ml from

solution C and diluting to 100 ml in another volu-

metric ¯ask.

3. Methods

Calibration is one of the most important techniques

in the area of analytical chemistry [12±15]. It involves

Fig. 2. (a) Normalised elution profiles of pure compounds at pH

4.9; (b) normalised elution profiles of pure compounds at pH 5.0.

Table 1

Dilution scheme for the 1±5% 3:2 hydroxypyridine calibration

experiments

Percentage of

3-hydroxypyridine

Stock solution

A (ml)

Stock solution

C (ml)

Solvent

(ml)

1 3 1 6

2 3 2 5

3 3 3 4

4 3 4 3

5 3 5 2
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recording a series of responses (usually absorbances of

compounds for HPLC) and relating to concentrations.

A model is then built which can be subsequently used

to predict concentrations of unknown compounds.

Calibration can be performed in various modes

namely: (i) univariate; (ii) two-way PLS; (iii) three-

way unfolded PLS; and (iv) three-mode PLS. In this

work, PLS models are established for the last three

methods and the errors in the predictions of low-level

compound concentrations were compared to deter-

mine the most ef®cient method. The raw data for

all methods can be represented by a tensor Z, with

dimensions M�I�J (samples�time�wavelength)

which can be rearranged to meet the dimensional

demands of each method (Fig. 3). Following PLS

decomposition, the resultant scores, t, (correspond

to elution pro®les) and loadings, p, (correspond to

spectral pro®les) are extracted for each technique and

can be seen in Fig. 4 (K PLS components are

extracted).

3.1. Two-way PLS

Two-way PLS calibration has been extensively used

in many areas of analytical chemistry for a substantial

number of years [16±21]. Usually, an X matrix (often a

matrix of absorbance values at successive time units

and various wavelengths) is calibrated against a y
vector (often a concentration vector for one of the

compounds present in a mixture). In the case of HPLC,

elution pro®les in the time direction or spectral pro-

®les in the wavelength direction of mixtures of com-

pounds can be calibrated against compound

concentration. In chemometrics, two main algorithms

have been used, namely PLS1 and PLS2 [22]. The ®rst

one, described in detail in a paper by Wold [23], has

been used in this study to perform all two-way PLS

and unfolded three-way PLS calculations.

Table 2

Two different experimental designs for the minor impurity

No. of experiments Percentage of 3-hydroxypyridine

1 0.1 1.0

2 0.1 1.0

3 0.2 2.0

4 0.2 2.0

5 0.2 2.0

6 0.3 3.0

7 0.3 3.0

8 0.3 3.0

9 0.3 3.0

10 0.4 4.0

11 0.4 4.0

12 0.4 4.0

13 0.5 5.0

14 0.5 5.0

Fig. 3. Different ways of processing a three-way tensor Z.
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3.1.1. Elution profiles

The elution pro®le of a mixture of compounds,

summed over all wavelengths, ai, can be calibrated

against compound concentration, y, and

ai �
XJ

j�1

xij;

where xij is a point at time i and wavelength j. In total, I

points in time are used for each time pro®le, and there

are also J wavelengths. In this study, all wavelengths

were used (J�51).

3.1.2. Spectral profiles

Alternatively, the spectral pro®le of a mixture of

compounds, summed over all points in time, �j, can be

calibrated against compound concentration, y as

�j �
XI2

i�I1

xij:

In total, J points in wavelength are taken into

consideration for each spectral pro®le. In this study,

the number of points in time was restricted to 130 to

make the calculations faster, and certain points before

and after the elution of the peaks in the chromato-

grams were cut-off.

3.2. Three-way unfolded PLS

In unfolded three-way PLS calibration, tensor Z is

unfolded into a 2D X matrix. To do this, the rows of Z
are concatenated to give a row vector, so that the

resultant two-way X matrix now has dimensions

M�(IJ). Then, PLS is performed as in ordinary

two-way PLS applications. The details of the method

have been described in a previous paper [24].

3.3. Three-mode PLS

Genuine three-mode PLS calibration is a much

more elaborate technique that has received a signi®-

cant amount of attention in the past decade, mainly

due to the availability of sophisticated modern

analytical equipment. In three-mode PLS [6±8], the

Z tensor is decomposed into a set of triads, consisting

of one scores vector t, and two weight vectors wj

(wavelength dimension) and wk (time dimension). The

contribution to the 1st PLS component, x̂ijk is then

expressed as xijk�tiw
jwk, and subtracted from X for

subsequent PLS components. The description of the

algorithm is explained in detail by Bro [25], and a

simple graphical representation of the decomposition

is given in Fig. 3(iv). The main advantage of three-

mode PLS is that all the three vectors produced have

maximum covariance with the unexplained part of the

dependent variable. The algorithm also uses fewer

parameters when compared to unfolded three-way

PLS, which makes it much easier to visualise and

interpret.

3.4. Autoprediction and cross-validation

3.4.1. Autopredictions

When a model is built from known compounds with

de®ned concentrations, then the predictions for the

concentrations of the compounds (autopredictions) are

usually over-optimistic and result in a perfect ®t with a

minimal error. In this paper, PLS predictions (autop-

redictions) were ®rst calculated for each of the 14

concentrations of 3-hydroxypyridine, by each PLS

method separately, after extracting N PLS components

successively. The root mean square error of all pre-

dictions, (RMSE), is subsequently calculated for each

PLS method. RMSE values were calculated in mM

and converted to the appropriate relative percentage

error.

In total, % autoprediction errors, ap%, in concen-

tration predictions for up to four PLS components are

reported. The more the PLS components extracted, the

lesser the error, since there are more terms in the

model. However, it is essential to recognise that the

reduction in error may be due to over®tting, so it is not

Fig. 4. Decomposition of each PLS method into scores and

loadings matrices.
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necessarily real. Hence, some form of validation is

required to assess the quality of the model.

3.4.2. Cross-validation

As auto-predictions always overestimate the good-

ness of a model, a method needs to be applied to

evaluate how well the particular model will predict the

concentrations of unknown compounds. Testing, using

an independent test set, as well as cross-validation, are

two such methods. In this work, cross-validation has

been chosen as the method of identifying how good a

model is. In a previous paper [22], we advocate an

independent test set because cross-validation provides

an over-optimistic assessment of the model quality for

poorly designed training sets. However, the case in this

paper involves only one compound changing in con-

centration, and so there are no issues of orthogonality.

Therefore, cross-validation is valid.

Several methods for cross-validation have been

reported in the literature, but in this work, we focus

on the method of taking one sample out at a time and

using the model built by the previous samples to

predict the concentration of the missing sample. Each

of the M samples is then removed in turn and its

concentration is predicted by the model formed by the

remaining samples.

To test a model formed by a particular PLS method,

a value of RMSECV was calculated. Once again,

RMSECV values were calculated in mM and con-

verted to the appropriate relative percentage, cv%.

3.5. Data pre-processing

3.5.1. Interpolation

Although the DAD instrument was set up to collect

data points every 1 s for all runs, the precision of the

time readings was not reproducible down to 0.1 s. For

example, when one run would take down absorbance

values at time points starting at 1.1, 2.1, 3.1 s at 1 s

intervals, the next run may record readings starting at

1.3, 2.3 s and so on. To keep the values at the same

comparable scale (to 1.0 s), they were interpolated

using an in-house VBA macro.

3.5.2. Alignment

After interpolation was performed, it was found that

a few chromatograms amongst each set of runs were

not perfectly aligned with the rest. Alignment is an

essential pre-requisite for PLS to work well, therefore,

the ones that did not align precisely were corrected by

appropriate shifting of the interpolated scans.

3.5.3. Unfolding and centring

As mentioned in Section 2, the raw data was stored

as a three-way tensor Z of dimensions M�I�J. To be

able to extract any relevant information, Z was

unfolded to a two-way matrix X of M�I.J dimensions.

For the three-way applications, X was mean centred

along M, and the one row-vector was subtracted from

it, according to the equation

centred
M;I:J X �M;I:J X ÿM;I:J �x:

For three-mode PLS and three-way unfolded PLS,

this matrix was used as the X data block. Note that for

the three-way method, it is quite common to store the

data in Matlab as the corresponding unfolded matrix,

for reasons of simplicity. However, data-handling

takes place assuming all three dimensions as described

in Section 3.3.

For the two-way methods, Z is converted to two 2D

matrices with dimensions M�I and M�J, respectively,

which were mean centred along M, before used in

PLS.

3.6. Software

The chromatographic data acquired from the Waters

HPLC chromatograph were converted into the appro-

priate matrices using a combination of two relevant

macros. The ®rst one, the 2010 DDE Assistant for Raw

Data macro (Version 2.10) was written by Waters and

outputs the data as two-column vectors, the ®rst one

being the various wavelengths at successive points in

time and the second being their corresponding absor-

bance values. The two-column matrix is then con-

verted to an I�J matrix using a second VBA macro

that was written in-house.

The unfolding and centring of tensor Z was

performed in VBA using an in-house macro, and

all autoprediction and cross-validation calculations

were performed in Matlab using a software provided

by Dr. R. Bro. Representative results were also vali-

dated against a C�� program written by Dr. R.L.

Erskine.
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4. Results and discussion

4.1. Predictions at pH 5.0

4.1.1. Predictions for 1±5% concentrations of the

minor impurity

The predictions for the 1±5% concentration range

of the minor impurity, 3-hydroxypyridine, can be seen

in Table 3, as % errors with respect to the average

concentration of 3-hydroxypyridine (at 3%). In total,

% errors for four PLS components are reported,

although not so many components are always needed

for all four PLS methods. The trend is the same for

both auto-predicted and cross-validated errors, with

the latter always being higher. The focus of the dis-

cussion is going to be on the cross-validated predic-

tions, as they are known to be more realistic.

For example, for the two-way spectral pro®le PLS

method, the cv% error is more or less constant after

two PLS components are extracted, and has the low

value of 3.2%. Note that the true % errors are obtained

by multiplying by the average concentration (3%), so

that a 3.2% error represents an overall true 0.096%

error within the 1±5% range. The third PLS compo-

nent shows a very slight improvement, which can also

be regarded as noise, whereas in the fourth PLS

component, the error starts to increase back again

and the model loses con®dence. Thus, two PLS com-

ponents are thought to model the data quite suf®-

ciently. After plotting true versus cross-validated

predicted concentrations of 3-hydroxypyridine (values

reported in mM), a straight line is obtained and is

depicted in Fig. 5(a).

The rest of the methods all show very high cv%

errors after extracting two PLS components. This is

not surprising as there is quite a signi®cant residual

left unexplained in the X matrices, and this can be

attributed to the discrepancies observed in aligning the

interpolated data. This problem does not occur for the

spectral pro®les and is only observed for the time-

Table 3

Relative % errors for the 1±5% concentration range at pH 5.0

No. of PLS

components

Autoprediction

errors (ap%)

Cross-validation

errors (cv%)

Spectral

two-way PLS

1 34.7 40.3

2 2.4 3.2

3 1.3 2.0

4 1.1 2.5

Elution

two-way PLS

1 31.6 42.1

2 30.8 36.9

3 9.1 13.6

4 4.3 8.2

Three-way

unfolded

1 32.4 41.5

2 29.9 37.5

3 2.8 4.3

4 1.5 3.3

Three-way 1 33.9 43.7

2 31.8 40.1

3 2.6 4.5

4 1.6 3.5

Note that the true % errors are obtained by multiplying by the

average concentration, so that a 10% ap% error represents an

overall true 0.3% error.

Fig. 5. (a) Predicted cross-validated versus true concentrations for

the 1±5% range of 3-hydroxypyridine by spectral profile two-way

PLS (two PLS components) at pH 5.0; (b) predicted cross-validated

versus true concentrations for the 1±5% range of 3-hydroxypyr-

idine by elution profile two-way PLS (three PLS components) at

pH 5.0.
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dependent data, so a third PLS component ± in two

compound mixtures ± is essential in getting reasonable

predictions using any time-dependent method in

HPLC (also observed using autopredictions). Fig. 6(a)

and (b) show the difference in prediction calibration

curves for the three-way PLS method after extracting

2 and 3 PLS components, respectively. The extra

component problem represents the noise introduced

into the system due to inexact time reproducibility. It

is important to recognise that the chromatographic

hardware used in this study is one of the most repro-

ducible one in the market, so this problem will be more

signi®cant in most practical cases.

Among the three time-dependent methods exam-

ined, clearly, the three-way unfolded methods give

similar errors after three PLS components (approxi-

mately 4.4%), whereas, the two-way elution pro®le

method gives an error which is about three times as

high (13.6%). This is easily understood as the three-

way method incorporates some spectral information,

too, whereas the two-way elution pro®le PLS method

depends only on the time pro®le. As at pH 5.0 the two

compounds are nearly co-eluting, the latter method

gives considerably worse predictions. A fourth com-

ponent can also be extracted for even better predic-

tions. Plotting graphs of true versus predicted

concentrations for the three-way methods (three

PLS components) results in exactly the same graph

to the one obtained with the spectral pro®le two-way

PLS method. However, for the elution pro®le two-way

PLS method, the graph is less linear (Fig. 5(b)).

4.1.2. Predictions for 0.1±0.5% of the minor impurity

The predictions for the 0.1±0.5% concentration

range of 3-hydroxypyridine, can be seen in Table 4.

From a ®rst look at the errors reported, it is apparent

that they are signi®cantly higher, as the % range to be

predicted is 10 times less than the one used above.

Once again, the auto-predicted errors are less than the

corresponding cross-validated. For the latter ones, all

time-dependent methods appear to give errors around

34%, even after four PLS components have been
Fig. 6. (a) Predicted cross-validated versus true concentrations for

the 1±5% range of 3-hydroxypyridine by three-way PLS (two PLS

components) at pH 5.0; (b) predicted cross-validated versus true

concentrations for the 1±5% range of 3-hydroxypyridine by three-

way PLS (three PLS components) at pH 5.0.

Table 4

Relative % errors for the 0.1±0.5% concentration range at pH 5.0

No. of PLS

components

Autoprediction

errors (ap%)

Cross-validation

errors (cv%)

Spectral

two-way PLS

1 29.2 33.1

2 14.3 20.9

3 5.9 12.3

4 4.3 8.1

Elution

two-way PLS

1 29.7 35.4

2 29.2 36.8

3 23.0 41.6

4 22.3 35.9

Three-way

unfolded

1 29.7 35.4

2 29.1 36.5

3 22.2 41.9

4 16.1 30.2

Three-way 1 29.7 35.4

2 29.1 36.4

3 23.9 42.9

4 21.6 34.1

Note that the true % errors are obtained by multiplying by the

average concentration, so that a 20% ap% error represents an

overall true 0.06% error.
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extracted. A typical graph of predicted cross-validated

versus true concentrations for the three-way unfolded

method, after four components, is shown in Fig. 7(a).

What is also quite remarkable is that the autopredic-

tion results do not seem to improve dramatically after

the same number of components have been extracted

and give quite high errors, too.

This is not the case, though, for the spectral pro®les

two-way PLS method, where both autoprediction and

cross-validated errors decrease considerably with

increasing number of PLS components. Thus, after

two PLS components have been extracted, the

average cv% prediction error is 20.9%, whereas after

the third PLS is extracted this error drops to 12.2%

(Fig. 7(b)). These observations are not surprising,

since ± as stated above ± the spectral method does

not depend at all on the resolution of compounds.

Although the error is higher than before, it is not

excessive, considering the fact that we are dealing

with very low-level impurities, and more important,

with co-eluting ones.

4.2. Predictions at pH 4.9

4.2.1. Predictions for 1±5% concentrations of the

minor impurity

The predictions for the 1±5% concentration range

of 3-hydroxypyridine, are given in Table 5. The basic

trend is similar to the one observed for the same

concentration range, described in Section 4.1.1. For

the two-way spectral pro®les PLS method, the cv%

error is approximately constant after two PLS com-

ponents are extracted, and has a value of 6.5%. For the

two-way elution pro®le PLS method, the cv% error

after three PLS components have been extracted is

actually lower than that when the compounds were co-

eluting, indicating that this method works better when

the resolution between the peaks increases, as it is

direct and only dependent on time.

However, the cv% predictions for the remaining

three-way methods are slightly higher than those ones

when the compounds were co-eluting. This could be

attributed to the fact that there might have been a

higher dilution error in any of the fourteen samples

present in the dilution scheme. This would in fact

Fig. 7. (a) Predicted cross-validated versus true concentrations for

the 0.1±0.5% range of 3-hydroxypyridine by three-way unfolded

PLS (four PLS components) at pH 5.0; (b) predicted cross-

validated versus true concentrations for the 0.1±0.5% range of 3-

hydroxypyridine by spectral profile two-way PLS (three PLS

components) at pH 5.0.

Table 5

Relative % errors for the 1±5% concentration range at pH 4.9

No. of PLS

components

Autoprediction

errors (ap%)

Cross-validation

errors (cv%)

Spectral

two-way PLS

1 22.2 25.0

2 4.9 6.5

3 3.9 6.9

4 3.3 6.7

Elution

two-way PLS

1 28.9 33.9

2 18.8 23.2

3 5.4 8.0

4 4.0 6.4

Three-way

unfolded

1 30.3 35.5

2 21.3 26.1

3 5.9 8.8

4 4.0 6.5

Three-way 1 30.7 36.0

2 22.1 27.0

3 6.4 9.8

4 4.0 6.5
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cause an increase in the reported errors, and the errors

reported for the fourth PLS components could be

taken as possible dilution errors. However, all four

methods are seen to give approximately similar

results, between 8±10% (three PLS components) for

the time-dependent methods and 6.5% for the spectral

method, which is still the better of the four.

To account for a possible dilution error in the

sample preparation, the 1±5% set of experiments were

repeated at pH 4.9. This time, the errors after three

PLS components were extracted were less than those

in both 1±5% set of experiments, as expected. The

cv% errors for all three time-dependent methods

averaged 3.3% after extraction of the third PLS com-

ponent, whereas for the spectral two-way method, the

cv% error was 4.7% after two PLS components and

4.1% at three PLS components. This could imply that

at a higher peak resolution, time-dependent methods

may work better than spectral-dependent ones.

Clearly, as peaks get closer, the reverse is also true,

as shown in Table 3.

4.2.2. Predictions for 0.1±0.5% concentrations of the

minor impurity

The predictions for the 0.1±0.5% concentration

range of 3-hydroxypyridine are given in Table 6.

Compared with the corresponding ones at pH 5.0,

they are improved. The spectral two-way PLS method

gives a cv% error 7.3% less than the one at pH 5.0,

after extraction of two PLS components. Further

extraction of a third PLS component improves the

error by approximately 4.6% (linear calibration curve

seen in Fig. 8(a)), especially as we are dealing with

very little impurities. The remaining time-dependent

methods show a dramatic improvement in prediction

at the fourth PLS component, with the elution pro®le

two-way PLS method (Fig. 8(b)) working slightly

better than the three-way methods. Once again, the

spectral method appears to be working better than the

rest of methods, a result which has been shown with

extreme con®dence for this sort of HPLC data of

partially resolved impurities.

5. Conclusion

In this paper a comparison on the use of different

approaches to PLS calibration for the quanti®cation of

a closely eluting impurity in HPLC has been made.

Many conclusions can be reached.

First of all the methods are remarkably effective in

quanti®cation of low impurity levels. For example, in

Table 4, a relative cross-validated error of 8.1% for

spectral two-way PLS represents an average absolute

error of 0.024% since the concentration range is

centred on a level of 0.3% impurity, in a case where

the peaks are almost completely overlapping.

The quality of predictions depends, in part, on the

percentage impurity, as expected. The relationship to

the peak separation is clear at the lower impurity

range, especially for the time-dependent methods

(see Tables 4 and 6). At higher impurity levels, this

factor is not so signi®cant because the apparent lowest

cross-validated error is probably almost totally depen-

dent on unknown sample preparation errors, and so

represents an excellent prediction.

It is slightly surprising that the three-way methods

perform less well than the two-way spectral methods.

This is almost inevitably due to the problem of

inconsistencies in elution time. Even aligning peaks

Table 6

Relative % errors for the 0.1±0.5% concentration range at pH 4.9

No. of PLS

components

Autoprediction

errors (ap%)

Cross-validation

errors (cv%)

Spectral

two-way PLS

1 30.9 34.9

2 10.5 13.6

3 6.3 8.9

4 2.6 7.5

Elution

two-way PLS

1 37.9 42.2

2 31.1 38.0

3 14.4 36.0

4 2.2 9.8

Three-way

unfolded

1 38.0 42.3

2 31.4 38.7

3 14.8 39.5

4 3.0 11.5

Three-way 1 38.0 42.3

2 31.4 38.7

3 14.5 39.6

4 2.3 11.5
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to their maxima does not entirely solve this problem,

because the exact offsets may differ by less than one

sampling time. Spectral methods are independent of

this dif®culty and so are not in¯uenced by this pro-

blem. They are also largely independent of resolution.

This surprising conclusion suggests that the chroma-

tographic dimension degrades information in the case

described in this paper. The results contradict simula-

tion studies which do not take into account variability

in elution time.

Despite these limitations, PLS is a very powerful

approach for the quanti®cation of small levels of

impurities in partially overlapping HPLC peaks.
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